Gang Liu, Qin Zhao, Yan Li, Dongmei Zhu, Hong Peng
{"title":"APOA1-AS 在结直肠癌中的作用:研究其与恶性生物学行为的关系","authors":"Gang Liu, Qin Zhao, Yan Li, Dongmei Zhu, Hong Peng","doi":"10.1016/j.mcp.2025.102017","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Colorectal cancer (CRC) is a common malignant tumor associated with high morbidity and mortality. Long non-coding RNAs (lncRNAs) play crucial roles in cancer development and progression. This study aimed to explore the role of lncRNA APOA1-AS in colorectal cancer and elucidate its underlying mechanisms.</p><p><strong>Methods: </strong>Clinical samples were collected, and high-throughput sequencing was performed to identify differentially expressed lncRNAs in colorectal cancer. Among these, the key lncRNA APOA1-AS was selected for further investigation. The expression of APOA1-AS in colorectal cancer tissues and cells was evaluated. The effects of APOA1-AS on cell proliferation, migration, invasion, and apoptosis were assessed through knockdown and overexpression of APOA1-AS in SW620 and RKO cells. Additionally, the relationship between APOA1-AS and the malignant biological behaviors of colorectal cancer cells was also investigated. Furthermore, the involvement of APOA1-AS in glucose metabolism reprogramming and the cGMP-PKG signaling pathway was analyzed.</p><p><strong>Results: </strong>A total of 2,985 differentially expressed lncRNAs were identified in colorectal cancer, including APOA1-AS, which showed the most significant upregulation. APOA1-AS expression was significantly higher in colorectal cancer tissues compared to normal tissues. Overexpression of APOA1-AS promoted cell proliferation, migration, and invasion while inhibiting apoptosis in SW620 and RKO cells. Furthermore, APOA1-AS was found to regulate glucose metabolism reprogramming, enhance tumor malignant biological behaviors and facilitate tumor cell drug resistance through the cGMP-PKG signaling pathway.</p><p><strong>Conclusion: </strong>Our study demonstrates that APOA1-AS is a potential key regulator in colorectal cancer development and progression. It functions via glucose metabolism reprogramming and the cGMP-PKG signaling pathway, offering a novel therapeutic target for colorectal cancer.</p>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":" ","pages":"102017"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of APOA1-AS in Colorectal Cancer: Investigating Its Association with Malignant Biological Behaviors.\",\"authors\":\"Gang Liu, Qin Zhao, Yan Li, Dongmei Zhu, Hong Peng\",\"doi\":\"10.1016/j.mcp.2025.102017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Colorectal cancer (CRC) is a common malignant tumor associated with high morbidity and mortality. Long non-coding RNAs (lncRNAs) play crucial roles in cancer development and progression. This study aimed to explore the role of lncRNA APOA1-AS in colorectal cancer and elucidate its underlying mechanisms.</p><p><strong>Methods: </strong>Clinical samples were collected, and high-throughput sequencing was performed to identify differentially expressed lncRNAs in colorectal cancer. Among these, the key lncRNA APOA1-AS was selected for further investigation. The expression of APOA1-AS in colorectal cancer tissues and cells was evaluated. The effects of APOA1-AS on cell proliferation, migration, invasion, and apoptosis were assessed through knockdown and overexpression of APOA1-AS in SW620 and RKO cells. Additionally, the relationship between APOA1-AS and the malignant biological behaviors of colorectal cancer cells was also investigated. Furthermore, the involvement of APOA1-AS in glucose metabolism reprogramming and the cGMP-PKG signaling pathway was analyzed.</p><p><strong>Results: </strong>A total of 2,985 differentially expressed lncRNAs were identified in colorectal cancer, including APOA1-AS, which showed the most significant upregulation. APOA1-AS expression was significantly higher in colorectal cancer tissues compared to normal tissues. Overexpression of APOA1-AS promoted cell proliferation, migration, and invasion while inhibiting apoptosis in SW620 and RKO cells. Furthermore, APOA1-AS was found to regulate glucose metabolism reprogramming, enhance tumor malignant biological behaviors and facilitate tumor cell drug resistance through the cGMP-PKG signaling pathway.</p><p><strong>Conclusion: </strong>Our study demonstrates that APOA1-AS is a potential key regulator in colorectal cancer development and progression. It functions via glucose metabolism reprogramming and the cGMP-PKG signaling pathway, offering a novel therapeutic target for colorectal cancer.</p>\",\"PeriodicalId\":49799,\"journal\":{\"name\":\"Molecular and Cellular Probes\",\"volume\":\" \",\"pages\":\"102017\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Probes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcp.2025.102017\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.mcp.2025.102017","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The Role of APOA1-AS in Colorectal Cancer: Investigating Its Association with Malignant Biological Behaviors.
Purpose: Colorectal cancer (CRC) is a common malignant tumor associated with high morbidity and mortality. Long non-coding RNAs (lncRNAs) play crucial roles in cancer development and progression. This study aimed to explore the role of lncRNA APOA1-AS in colorectal cancer and elucidate its underlying mechanisms.
Methods: Clinical samples were collected, and high-throughput sequencing was performed to identify differentially expressed lncRNAs in colorectal cancer. Among these, the key lncRNA APOA1-AS was selected for further investigation. The expression of APOA1-AS in colorectal cancer tissues and cells was evaluated. The effects of APOA1-AS on cell proliferation, migration, invasion, and apoptosis were assessed through knockdown and overexpression of APOA1-AS in SW620 and RKO cells. Additionally, the relationship between APOA1-AS and the malignant biological behaviors of colorectal cancer cells was also investigated. Furthermore, the involvement of APOA1-AS in glucose metabolism reprogramming and the cGMP-PKG signaling pathway was analyzed.
Results: A total of 2,985 differentially expressed lncRNAs were identified in colorectal cancer, including APOA1-AS, which showed the most significant upregulation. APOA1-AS expression was significantly higher in colorectal cancer tissues compared to normal tissues. Overexpression of APOA1-AS promoted cell proliferation, migration, and invasion while inhibiting apoptosis in SW620 and RKO cells. Furthermore, APOA1-AS was found to regulate glucose metabolism reprogramming, enhance tumor malignant biological behaviors and facilitate tumor cell drug resistance through the cGMP-PKG signaling pathway.
Conclusion: Our study demonstrates that APOA1-AS is a potential key regulator in colorectal cancer development and progression. It functions via glucose metabolism reprogramming and the cGMP-PKG signaling pathway, offering a novel therapeutic target for colorectal cancer.
期刊介绍:
MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.