表观基因功能多样性:同工异构体使用、无序结构域内容和可变结合伙伴。

IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY
Leroy Bondhus, Aileen A Nava, Isabelle S Liu, Valerie A Arboleda
{"title":"表观基因功能多样性:同工异构体使用、无序结构域内容和可变结合伙伴。","authors":"Leroy Bondhus, Aileen A Nava, Isabelle S Liu, Valerie A Arboleda","doi":"10.1186/s13072-025-00571-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Epigenes are defined as proteins that perform post-translational modification of histones or DNA, reading of post-translational modifications, form complexes with epigenetic factors or changing the general structure of chromatin. This specialized group of proteins is responsible for controlling the organization of genomic DNA in a cell-type specific fashion, controlling normal development in a spatial and temporal fashion. Moreover, mutations in epigenes have been implicated as causal in germline pediatric disorders and as driver mutations in cancer. Despite their importance to human disease, to date, there has not been a systematic analysis of the sources of functional diversity for epigenes at large. Epigenes' unique functions that require the assembly of pools within the nucleus suggest that their structure and amino acid composition would have been enriched for features that enable efficient assembly of chromatin and DNA for transcription, splicing, and post-translational modifications.</p><p><strong>Results: </strong>In this study, we assess the functional diversity stemming from gene structure, isoforms, protein domains, and multiprotein complex formation that drive the functions of established epigenes. We found that there are specific structural features that enable epigenes to perform their variable roles depending on the cellular and environmental context. First, epigenes are significantly larger and have more exons compared with non-epigenes which contributes to increased isoform diversity. Second epigenes participate in more multimeric complexes than non-epigenes. Thirdly, given their proposed importance in membraneless organelles, we show epigenes are enriched for substantially larger intrinsically disordered regions (IDRs). Additionally, we assessed the specificity of their expression profiles and showed epigenes are more ubiquitously expressed consistent with their enrichment in pediatric syndromes with intellectual disability, multiorgan dysfunction, and developmental delay. Finally, in the L1000 dataset, we identify drugs that can potentially be used to modulate expression of these genes.</p><p><strong>Conclusions: </strong>Here we identify significant differences in isoform usage, disordered domain content, and variable binding partners between human epigenes and non-epigenes using various functional genomics datasets from Ensembl, ENCODE, GTEx, HPO, LINCS L1000, and BrainSpan. Our results contribute new knowledge to the growing field focused on developing targeted therapies for diseases caused by epigene mutations, such as chromatinopathies and cancers.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"8"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786378/pdf/","citationCount":"0","resultStr":"{\"title\":\"Epigene functional diversity: isoform usage, disordered domain content, and variable binding partners.\",\"authors\":\"Leroy Bondhus, Aileen A Nava, Isabelle S Liu, Valerie A Arboleda\",\"doi\":\"10.1186/s13072-025-00571-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Epigenes are defined as proteins that perform post-translational modification of histones or DNA, reading of post-translational modifications, form complexes with epigenetic factors or changing the general structure of chromatin. This specialized group of proteins is responsible for controlling the organization of genomic DNA in a cell-type specific fashion, controlling normal development in a spatial and temporal fashion. Moreover, mutations in epigenes have been implicated as causal in germline pediatric disorders and as driver mutations in cancer. Despite their importance to human disease, to date, there has not been a systematic analysis of the sources of functional diversity for epigenes at large. Epigenes' unique functions that require the assembly of pools within the nucleus suggest that their structure and amino acid composition would have been enriched for features that enable efficient assembly of chromatin and DNA for transcription, splicing, and post-translational modifications.</p><p><strong>Results: </strong>In this study, we assess the functional diversity stemming from gene structure, isoforms, protein domains, and multiprotein complex formation that drive the functions of established epigenes. We found that there are specific structural features that enable epigenes to perform their variable roles depending on the cellular and environmental context. First, epigenes are significantly larger and have more exons compared with non-epigenes which contributes to increased isoform diversity. Second epigenes participate in more multimeric complexes than non-epigenes. Thirdly, given their proposed importance in membraneless organelles, we show epigenes are enriched for substantially larger intrinsically disordered regions (IDRs). Additionally, we assessed the specificity of their expression profiles and showed epigenes are more ubiquitously expressed consistent with their enrichment in pediatric syndromes with intellectual disability, multiorgan dysfunction, and developmental delay. Finally, in the L1000 dataset, we identify drugs that can potentially be used to modulate expression of these genes.</p><p><strong>Conclusions: </strong>Here we identify significant differences in isoform usage, disordered domain content, and variable binding partners between human epigenes and non-epigenes using various functional genomics datasets from Ensembl, ENCODE, GTEx, HPO, LINCS L1000, and BrainSpan. Our results contribute new knowledge to the growing field focused on developing targeted therapies for diseases caused by epigene mutations, such as chromatinopathies and cancers.</p>\",\"PeriodicalId\":49253,\"journal\":{\"name\":\"Epigenetics & Chromatin\",\"volume\":\"18 1\",\"pages\":\"8\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786378/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics & Chromatin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13072-025-00571-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics & Chromatin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13072-025-00571-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:表观基因被定义为对组蛋白或DNA进行翻译后修饰,读取翻译后修饰,与表观遗传因子形成复合物或改变染色质一般结构的蛋白质。这种特殊的蛋白质组负责以细胞类型特定的方式控制基因组DNA的组织,以空间和时间的方式控制正常的发育。此外,表观基因突变已被认为是生殖系儿科疾病的病因和癌症的驱动突变。尽管它们对人类疾病很重要,但迄今为止,还没有对整个表观基因的功能多样性来源进行系统的分析。表观基因的独特功能需要在细胞核内组装池,这表明它们的结构和氨基酸组成可能已经丰富,能够有效地组装染色质和DNA进行转录、剪接和翻译后修饰。结果:在这项研究中,我们评估了源于基因结构、异构体、蛋白质结构域和多蛋白复合物形成的功能多样性,这些功能多样性驱动了已建立的表观基因的功能。我们发现有特定的结构特征使表观基因能够根据细胞和环境背景发挥其可变的作用。首先,与非表观基因相比,表观基因明显更大,具有更多的外显子,这有助于增加异构体的多样性。第二表观基因比非表观基因参与更多的多聚体复合体。第三,考虑到它们在无膜细胞器中的重要性,我们发现表观基因在本质上更大的内在无序区(idr)中富集。此外,我们评估了它们表达谱的特异性,发现表观基因在智力残疾、多器官功能障碍和发育迟缓的儿科综合征中更普遍地表达,与它们的富集一致。最后,在L1000数据集中,我们确定了可能用于调节这些基因表达的药物。结论:本研究利用来自Ensembl、ENCODE、GTEx、HPO、LINCS L1000和BrainSpan的各种功能基因组数据集,发现人类表观基因和非表观基因在同种异构体使用、无序结构域内容和可变结合伙伴方面存在显著差异。我们的研究结果为开发由表观基因突变引起的疾病(如染色质病变和癌症)的靶向治疗提供了新的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epigene functional diversity: isoform usage, disordered domain content, and variable binding partners.

Background: Epigenes are defined as proteins that perform post-translational modification of histones or DNA, reading of post-translational modifications, form complexes with epigenetic factors or changing the general structure of chromatin. This specialized group of proteins is responsible for controlling the organization of genomic DNA in a cell-type specific fashion, controlling normal development in a spatial and temporal fashion. Moreover, mutations in epigenes have been implicated as causal in germline pediatric disorders and as driver mutations in cancer. Despite their importance to human disease, to date, there has not been a systematic analysis of the sources of functional diversity for epigenes at large. Epigenes' unique functions that require the assembly of pools within the nucleus suggest that their structure and amino acid composition would have been enriched for features that enable efficient assembly of chromatin and DNA for transcription, splicing, and post-translational modifications.

Results: In this study, we assess the functional diversity stemming from gene structure, isoforms, protein domains, and multiprotein complex formation that drive the functions of established epigenes. We found that there are specific structural features that enable epigenes to perform their variable roles depending on the cellular and environmental context. First, epigenes are significantly larger and have more exons compared with non-epigenes which contributes to increased isoform diversity. Second epigenes participate in more multimeric complexes than non-epigenes. Thirdly, given their proposed importance in membraneless organelles, we show epigenes are enriched for substantially larger intrinsically disordered regions (IDRs). Additionally, we assessed the specificity of their expression profiles and showed epigenes are more ubiquitously expressed consistent with their enrichment in pediatric syndromes with intellectual disability, multiorgan dysfunction, and developmental delay. Finally, in the L1000 dataset, we identify drugs that can potentially be used to modulate expression of these genes.

Conclusions: Here we identify significant differences in isoform usage, disordered domain content, and variable binding partners between human epigenes and non-epigenes using various functional genomics datasets from Ensembl, ENCODE, GTEx, HPO, LINCS L1000, and BrainSpan. Our results contribute new knowledge to the growing field focused on developing targeted therapies for diseases caused by epigene mutations, such as chromatinopathies and cancers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epigenetics & Chromatin
Epigenetics & Chromatin GENETICS & HEREDITY-
CiteScore
7.00
自引率
0.00%
发文量
35
审稿时长
1 months
期刊介绍: Epigenetics & Chromatin is a peer-reviewed, open access, online journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信