{"title":"钙敏感受体与kokumi物质γ-谷氨酰酰甘氨酸络合的低温电镜结构。","authors":"Hiroki Yamaguchi, Seiji Kitajima, Hiroshi Suzuki, Shota Suzuki, Kouki Nishikawa, Akiko Kamegawa, Yoshinori Fujiyoshi, Kazutoshi Takahashi, Uno Tagami, Yutaka Maruyama, Motonaka Kuroda, Masayuki Sugiki","doi":"10.1038/s41598-025-87999-1","DOIUrl":null,"url":null,"abstract":"<p><p>Taste is a key element for food palatability and is strongly influenced by the five basic tastes and other taste sensations, such as fatty orosensation, and koku perception, which indicates taste complexity, mouthfulness and lastingness. This study focuses on the taste modifier γ-glutamyl-valyl-glycine (γ-EVG), a potent kokumi substance that enhances taste and koku perception by modulating the calcium-sensing receptor (CaSR). We used cryo-electron microscopy to determine the structure of the CaSR/γ-EVG complex at a resolution of 3.55 Å. Structural analysis revealed important interactions between γ-EVG and the CaSR, involving key residues, such as Pro39, Phe42, Arg66, Ser147, and Glu297. Mutagenesis experiments demonstrated the importance of these residues in peptide binding. Each γ-EVG residue contributed to its binding to the orthosteric ligand binding site of the CaSR. These findings elucidate the molecular basis of kokumi peptide recognition by the CaSR and contribute to a better understanding of positive allosteric modulators of the CaSR. In addition, this research provides valuable insights into the functionality of class C G-protein-coupled receptors in taste perception, potentially informing the development of new taste modifiers and advancing the field of food science.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3894"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785791/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cryo-EM structure of the calcium-sensing receptor complexed with the kokumi substance γ-glutamyl-valyl-glycine.\",\"authors\":\"Hiroki Yamaguchi, Seiji Kitajima, Hiroshi Suzuki, Shota Suzuki, Kouki Nishikawa, Akiko Kamegawa, Yoshinori Fujiyoshi, Kazutoshi Takahashi, Uno Tagami, Yutaka Maruyama, Motonaka Kuroda, Masayuki Sugiki\",\"doi\":\"10.1038/s41598-025-87999-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Taste is a key element for food palatability and is strongly influenced by the five basic tastes and other taste sensations, such as fatty orosensation, and koku perception, which indicates taste complexity, mouthfulness and lastingness. This study focuses on the taste modifier γ-glutamyl-valyl-glycine (γ-EVG), a potent kokumi substance that enhances taste and koku perception by modulating the calcium-sensing receptor (CaSR). We used cryo-electron microscopy to determine the structure of the CaSR/γ-EVG complex at a resolution of 3.55 Å. Structural analysis revealed important interactions between γ-EVG and the CaSR, involving key residues, such as Pro39, Phe42, Arg66, Ser147, and Glu297. Mutagenesis experiments demonstrated the importance of these residues in peptide binding. Each γ-EVG residue contributed to its binding to the orthosteric ligand binding site of the CaSR. These findings elucidate the molecular basis of kokumi peptide recognition by the CaSR and contribute to a better understanding of positive allosteric modulators of the CaSR. In addition, this research provides valuable insights into the functionality of class C G-protein-coupled receptors in taste perception, potentially informing the development of new taste modifiers and advancing the field of food science.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"3894\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785791/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-87999-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-87999-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Cryo-EM structure of the calcium-sensing receptor complexed with the kokumi substance γ-glutamyl-valyl-glycine.
Taste is a key element for food palatability and is strongly influenced by the five basic tastes and other taste sensations, such as fatty orosensation, and koku perception, which indicates taste complexity, mouthfulness and lastingness. This study focuses on the taste modifier γ-glutamyl-valyl-glycine (γ-EVG), a potent kokumi substance that enhances taste and koku perception by modulating the calcium-sensing receptor (CaSR). We used cryo-electron microscopy to determine the structure of the CaSR/γ-EVG complex at a resolution of 3.55 Å. Structural analysis revealed important interactions between γ-EVG and the CaSR, involving key residues, such as Pro39, Phe42, Arg66, Ser147, and Glu297. Mutagenesis experiments demonstrated the importance of these residues in peptide binding. Each γ-EVG residue contributed to its binding to the orthosteric ligand binding site of the CaSR. These findings elucidate the molecular basis of kokumi peptide recognition by the CaSR and contribute to a better understanding of positive allosteric modulators of the CaSR. In addition, this research provides valuable insights into the functionality of class C G-protein-coupled receptors in taste perception, potentially informing the development of new taste modifiers and advancing the field of food science.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.