Churmy Y Fan, Brendan B McAllister, Sierra Stokes-Heck, Erika K Harding, Aliny Pereira de Vasconcelos, Laura K Mah, Lucas V Lima, Nynke J van den Hoogen, Sarah F Rosen, Boram Ham, Zizhen Zhang, Hongrui Liu, Franz J Zemp, Regula Burkhard, Markus B Geuking, Douglas J Mahoney, Gerald W Zamponi, Jeffrey S Mogil, Shalina S Ousman, Tuan Trang
{"title":"小胶质细胞和T细胞中不同性别特异性pannexin-1机制是神经性疼痛的基础。","authors":"Churmy Y Fan, Brendan B McAllister, Sierra Stokes-Heck, Erika K Harding, Aliny Pereira de Vasconcelos, Laura K Mah, Lucas V Lima, Nynke J van den Hoogen, Sarah F Rosen, Boram Ham, Zizhen Zhang, Hongrui Liu, Franz J Zemp, Regula Burkhard, Markus B Geuking, Douglas J Mahoney, Gerald W Zamponi, Jeffrey S Mogil, Shalina S Ousman, Tuan Trang","doi":"10.1016/j.neuron.2025.01.005","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic pain is a leading cause of disability, affecting more women than men. Different immune cells contribute to this sexual divergence, but the mechanisms, especially in females, are not well defined. We show that pannexin-1 (Panx1) channels on microglia and T cells differentially cause mechanical allodynia, a debilitating symptom of neuropathic pain. In male rodents, Panx1 drives vascular endothelial growth factor-A (VEGF-A) release from microglia. Cell-specific knockdown of microglial Panx1 or pharmacological blockade of the VEGF receptor attenuated allodynia in nerve-injured males. In females, nerve injury increased spinal CD8<sup>+</sup> T cells and leptin levels. Leptin release from female-derived CD8<sup>+</sup> T cells was Panx1 dependent, and intrathecal leptin-neutralizing antibody injection sex-specifically reversed allodynia. Adoptive transfer of female-derived CD8<sup>+</sup> T cells caused robust allodynia, which was prevented by a leptin-neutralizing antibody or leptin small interfering RNA (siRNA) knockdown. Panx1-targeted approaches may alleviate neuropathic pain in both sexes, while T cell- and leptin-directed treatments could have sex-dependent benefits for women.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"896-911.e9"},"PeriodicalIF":14.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divergent sex-specific pannexin-1 mechanisms in microglia and T cells underlie neuropathic pain.\",\"authors\":\"Churmy Y Fan, Brendan B McAllister, Sierra Stokes-Heck, Erika K Harding, Aliny Pereira de Vasconcelos, Laura K Mah, Lucas V Lima, Nynke J van den Hoogen, Sarah F Rosen, Boram Ham, Zizhen Zhang, Hongrui Liu, Franz J Zemp, Regula Burkhard, Markus B Geuking, Douglas J Mahoney, Gerald W Zamponi, Jeffrey S Mogil, Shalina S Ousman, Tuan Trang\",\"doi\":\"10.1016/j.neuron.2025.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic pain is a leading cause of disability, affecting more women than men. Different immune cells contribute to this sexual divergence, but the mechanisms, especially in females, are not well defined. We show that pannexin-1 (Panx1) channels on microglia and T cells differentially cause mechanical allodynia, a debilitating symptom of neuropathic pain. In male rodents, Panx1 drives vascular endothelial growth factor-A (VEGF-A) release from microglia. Cell-specific knockdown of microglial Panx1 or pharmacological blockade of the VEGF receptor attenuated allodynia in nerve-injured males. In females, nerve injury increased spinal CD8<sup>+</sup> T cells and leptin levels. Leptin release from female-derived CD8<sup>+</sup> T cells was Panx1 dependent, and intrathecal leptin-neutralizing antibody injection sex-specifically reversed allodynia. Adoptive transfer of female-derived CD8<sup>+</sup> T cells caused robust allodynia, which was prevented by a leptin-neutralizing antibody or leptin small interfering RNA (siRNA) knockdown. Panx1-targeted approaches may alleviate neuropathic pain in both sexes, while T cell- and leptin-directed treatments could have sex-dependent benefits for women.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"896-911.e9\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2025.01.005\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.01.005","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
慢性疼痛是导致残疾的主要原因,受影响的女性多于男性。不同的免疫细胞促成了这种性别差异,但机制,特别是在女性中,还没有很好地定义。我们表明,小胶质细胞和T细胞上的pannexin-1 (Panx1)通道不同地引起机械性异常性疼痛,这是神经性疼痛的一种衰弱症状。在雄性啮齿动物中,Panx1驱动小胶质细胞释放血管内皮生长因子- a (VEGF-A)。细胞特异性敲除小胶质细胞Panx1或VEGF受体的药物阻断可减轻神经损伤男性的异位性疼痛。在女性中,神经损伤增加了脊髓CD8+ T细胞和瘦素水平。来自女性来源的CD8+ T细胞的瘦素释放是Panx1依赖性的,鞘内注射瘦素中和抗体可特异性逆转异位性疼痛。女性来源的CD8+ T细胞过继性转移引起强烈的异位性疼痛,这可以通过瘦素中和抗体或瘦素小干扰RNA (siRNA)敲低来阻止。针对panx1的治疗方法可能减轻两性的神经性疼痛,而针对T细胞和瘦素的治疗方法可能对女性有性别依赖的益处。
Divergent sex-specific pannexin-1 mechanisms in microglia and T cells underlie neuropathic pain.
Chronic pain is a leading cause of disability, affecting more women than men. Different immune cells contribute to this sexual divergence, but the mechanisms, especially in females, are not well defined. We show that pannexin-1 (Panx1) channels on microglia and T cells differentially cause mechanical allodynia, a debilitating symptom of neuropathic pain. In male rodents, Panx1 drives vascular endothelial growth factor-A (VEGF-A) release from microglia. Cell-specific knockdown of microglial Panx1 or pharmacological blockade of the VEGF receptor attenuated allodynia in nerve-injured males. In females, nerve injury increased spinal CD8+ T cells and leptin levels. Leptin release from female-derived CD8+ T cells was Panx1 dependent, and intrathecal leptin-neutralizing antibody injection sex-specifically reversed allodynia. Adoptive transfer of female-derived CD8+ T cells caused robust allodynia, which was prevented by a leptin-neutralizing antibody or leptin small interfering RNA (siRNA) knockdown. Panx1-targeted approaches may alleviate neuropathic pain in both sexes, while T cell- and leptin-directed treatments could have sex-dependent benefits for women.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.