Yehia A-G Mahmoud, Nehal E Elkaliny, Omar A Darwish, Yara Ashraf, Rumaisa Ali Ebrahim, Shankar Prasad Das, Galal Yahya
{"title":"黄曲霉毒素解毒的综合综述,特别关注冷等离子体治疗。","authors":"Yehia A-G Mahmoud, Nehal E Elkaliny, Omar A Darwish, Yara Ashraf, Rumaisa Ali Ebrahim, Shankar Prasad Das, Galal Yahya","doi":"10.1007/s12550-025-00582-5","DOIUrl":null,"url":null,"abstract":"<p><p>Aflatoxins are potent carcinogens and pose significant risks to food safety and public health worldwide. Aflatoxins include Aflatoxin B1 (AFB1), Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1), Aflatoxin G2 (AFG2), and Aflatoxin M1 (AFM1). AFB1 is particularly notorious for its carcinogenicity, classified as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). Chronic exposure to aflatoxins through contaminated food and feed can lead to liver cancer, immunosuppression, growth impairment, and other systemic health issues. Efforts to mitigate aflatoxin contamination have traditionally relied on chemical treatments, physical separation methods, and biological degradation. However, these approaches often pose challenges related to safety, efficacy, and impact on food quality. Recently, cold plasma treatment has emerged as a promising alternative. Cold plasma generates reactive oxygen species, which effectively degrade aflatoxins on food surfaces without compromising nutritional integrity or safety. This review consolidates current research and advancements in aflatoxin detoxification, highlighting the potential of cold plasma technology to revolutionize food safety practices. By exploring the mechanisms of aflatoxin toxicity, evaluating existing detoxification methods, and discussing the principles and applications of cold plasma treatment.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive review for aflatoxin detoxification with special attention to cold plasma treatment.\",\"authors\":\"Yehia A-G Mahmoud, Nehal E Elkaliny, Omar A Darwish, Yara Ashraf, Rumaisa Ali Ebrahim, Shankar Prasad Das, Galal Yahya\",\"doi\":\"10.1007/s12550-025-00582-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aflatoxins are potent carcinogens and pose significant risks to food safety and public health worldwide. Aflatoxins include Aflatoxin B1 (AFB1), Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1), Aflatoxin G2 (AFG2), and Aflatoxin M1 (AFM1). AFB1 is particularly notorious for its carcinogenicity, classified as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). Chronic exposure to aflatoxins through contaminated food and feed can lead to liver cancer, immunosuppression, growth impairment, and other systemic health issues. Efforts to mitigate aflatoxin contamination have traditionally relied on chemical treatments, physical separation methods, and biological degradation. However, these approaches often pose challenges related to safety, efficacy, and impact on food quality. Recently, cold plasma treatment has emerged as a promising alternative. Cold plasma generates reactive oxygen species, which effectively degrade aflatoxins on food surfaces without compromising nutritional integrity or safety. This review consolidates current research and advancements in aflatoxin detoxification, highlighting the potential of cold plasma technology to revolutionize food safety practices. By exploring the mechanisms of aflatoxin toxicity, evaluating existing detoxification methods, and discussing the principles and applications of cold plasma treatment.</p>\",\"PeriodicalId\":19060,\"journal\":{\"name\":\"Mycotoxin Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycotoxin Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12550-025-00582-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycotoxin Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12550-025-00582-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
Comprehensive review for aflatoxin detoxification with special attention to cold plasma treatment.
Aflatoxins are potent carcinogens and pose significant risks to food safety and public health worldwide. Aflatoxins include Aflatoxin B1 (AFB1), Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1), Aflatoxin G2 (AFG2), and Aflatoxin M1 (AFM1). AFB1 is particularly notorious for its carcinogenicity, classified as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). Chronic exposure to aflatoxins through contaminated food and feed can lead to liver cancer, immunosuppression, growth impairment, and other systemic health issues. Efforts to mitigate aflatoxin contamination have traditionally relied on chemical treatments, physical separation methods, and biological degradation. However, these approaches often pose challenges related to safety, efficacy, and impact on food quality. Recently, cold plasma treatment has emerged as a promising alternative. Cold plasma generates reactive oxygen species, which effectively degrade aflatoxins on food surfaces without compromising nutritional integrity or safety. This review consolidates current research and advancements in aflatoxin detoxification, highlighting the potential of cold plasma technology to revolutionize food safety practices. By exploring the mechanisms of aflatoxin toxicity, evaluating existing detoxification methods, and discussing the principles and applications of cold plasma treatment.
期刊介绍:
Mycotoxin Research, the official publication of the Society for Mycotoxin Research, is a peer-reviewed, scientific journal dealing with all aspects related to toxic fungal metabolites. The journal publishes original research articles and reviews in all areas dealing with mycotoxins. As an interdisciplinary platform, Mycotoxin Research welcomes submission of scientific contributions in the following research fields:
- Ecology and genetics of mycotoxin formation
- Mode of action of mycotoxins, metabolism and toxicology
- Agricultural production and mycotoxins
- Human and animal health aspects, including exposure studies and risk assessment
- Food and feed safety, including occurrence, prevention, regulatory aspects, and control of mycotoxins
- Environmental safety and technology-related aspects of mycotoxins
- Chemistry, synthesis and analysis.