树皮甲虫侵染改变了与挪威云杉有关的木材、凋落物和土壤中的真菌群落。

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Diana Masch, François Buscot, Wolfgang Rohe, Kezia Goldmann
{"title":"树皮甲虫侵染改变了与挪威云杉有关的木材、凋落物和土壤中的真菌群落。","authors":"Diana Masch, François Buscot, Wolfgang Rohe, Kezia Goldmann","doi":"10.1093/femsec/fiaf015","DOIUrl":null,"url":null,"abstract":"<p><p>Recent exceptionally hot and dry summers provoked massive bark beetle outbreaks in German forests, which killed many conifers, forcing to clear-cut complete non-mature stands. The importance of fungi in ecosystems in particular in association with trees is widely recognized, but the ecology of how insect infestations of trees affect their mycobiomes remains poorly understood. Using Illumina MiSeq sequencing, we investigated fungal communities in soil, litter, and stem wood at early and late stages of bark beetle infestation in a Norway spruce [Picea abies (L.) Karst] stand in Central Germany. Fungal diversity decreased from soil to wood, with the highest proportion of unknown fungi in stem wood. Lifestyles, particularly of those fungi associated with stem wood, clearly changed depending on the infestation stage. The answer of tree-associated fungi to beetle infestation was characterized by an increasing community dissimilarity among all three habitats, i.e. it concerned not only the above-ground fungal communities directly connected to the tree. Our study, thus, pinpoints the cascading effects of tree infestations by bark beetles and subsequent tree diebacks on the proximate and distant mycobiomes of the plant soil system, which should be entirely considered to tackle the effects of environmental events on tree health.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840958/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bark beetle infestation alters mycobiomes in wood, litter, and soil associated with Norway spruce.\",\"authors\":\"Diana Masch, François Buscot, Wolfgang Rohe, Kezia Goldmann\",\"doi\":\"10.1093/femsec/fiaf015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent exceptionally hot and dry summers provoked massive bark beetle outbreaks in German forests, which killed many conifers, forcing to clear-cut complete non-mature stands. The importance of fungi in ecosystems in particular in association with trees is widely recognized, but the ecology of how insect infestations of trees affect their mycobiomes remains poorly understood. Using Illumina MiSeq sequencing, we investigated fungal communities in soil, litter, and stem wood at early and late stages of bark beetle infestation in a Norway spruce [Picea abies (L.) Karst] stand in Central Germany. Fungal diversity decreased from soil to wood, with the highest proportion of unknown fungi in stem wood. Lifestyles, particularly of those fungi associated with stem wood, clearly changed depending on the infestation stage. The answer of tree-associated fungi to beetle infestation was characterized by an increasing community dissimilarity among all three habitats, i.e. it concerned not only the above-ground fungal communities directly connected to the tree. Our study, thus, pinpoints the cascading effects of tree infestations by bark beetles and subsequent tree diebacks on the proximate and distant mycobiomes of the plant soil system, which should be entirely considered to tackle the effects of environmental events on tree health.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840958/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiaf015\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf015","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

最近异常炎热和干燥的夏季在德国森林中引发了大规模的树皮甲虫爆发,杀死了许多针叶树,迫使整个未成熟的林分被砍伐。真菌在生态系统中的重要性,特别是与树木相关的真菌的重要性已得到广泛认识,但关于树木的昆虫侵染如何影响其真菌群落的生态学仍然知之甚少。利用Illumina MiSeq测序技术,研究了挪威云杉(Picea abies (L.))树皮甲虫侵染早期和后期土壤、凋落物和茎材中的真菌群落。德国中部的喀斯特林。真菌多样性由土壤向木材递减,茎-木中未知真菌比例最高。生活方式,特别是那些与茎-木有关的真菌的生活方式,明显地根据侵染阶段而改变。树木相关真菌对甲虫侵染的响应在三种生境中表现出越来越大的群落差异,即它不仅涉及直接与树木相关的地上真菌群落。因此,我们的研究指出了树皮甲虫侵染树木和随后的树木枯死对植物土壤系统近端和远端真菌群落的级联效应,这应该被完全考虑到,以解决环境事件对树木健康的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bark beetle infestation alters mycobiomes in wood, litter, and soil associated with Norway spruce.

Recent exceptionally hot and dry summers provoked massive bark beetle outbreaks in German forests, which killed many conifers, forcing to clear-cut complete non-mature stands. The importance of fungi in ecosystems in particular in association with trees is widely recognized, but the ecology of how insect infestations of trees affect their mycobiomes remains poorly understood. Using Illumina MiSeq sequencing, we investigated fungal communities in soil, litter, and stem wood at early and late stages of bark beetle infestation in a Norway spruce [Picea abies (L.) Karst] stand in Central Germany. Fungal diversity decreased from soil to wood, with the highest proportion of unknown fungi in stem wood. Lifestyles, particularly of those fungi associated with stem wood, clearly changed depending on the infestation stage. The answer of tree-associated fungi to beetle infestation was characterized by an increasing community dissimilarity among all three habitats, i.e. it concerned not only the above-ground fungal communities directly connected to the tree. Our study, thus, pinpoints the cascading effects of tree infestations by bark beetles and subsequent tree diebacks on the proximate and distant mycobiomes of the plant soil system, which should be entirely considered to tackle the effects of environmental events on tree health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信