{"title":"Maleimide grafting onto polysaccharides via mild condition esterification and its impact on their structure","authors":"Valentin Silveira , Mohamed Jebrane , Adrien Letoffe , Stergios Adamopoulos","doi":"10.1016/j.carres.2025.109401","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes an innovative approach to tailor the properties of two polysaccharides, microcrystalline cellulose (MCC) and potato starch, through chemical modification in dispersion. The methodology involves the grafting of 6-Maleimidohexanoic acid (6-MHA) moieties onto hydroxyl groups of the polysaccharides without dissolving them in order to keep their native structure preserved. To overcome the slow and inefficient reaction between carboxylic acids of 6-MHA and hydroxyl groups of the polysaccharides, a vinyl ester of 6-MHA was synthesized through the transvinylation of 6-MHA acid with vinyl acetate. The resulting 6-MHA ester was employed to introduce a new functionality to polysaccharides’ hydroxyl groups via transesterification, catalyzed by potassium carbonate. To enhance the reactivity, the polysaccharides were mercerized prior to modification process. The efficiency of the transesterification reaction between the vinyl ester of 6-MHA and the hydroxyl groups of the polysaccharides was confirmed using Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). Thermal behavior analysis was carried out using thermogravimetric analysis (TGA), while changes in crystallinity resulting from the modification were assessed through X-ray diffraction analysis (XRD). Finally, the impact of the modification on the morphology of polysaccharides was examined with environmental scanning electron microscopy (ESEM). Despite changes in microstructure, MCC kept its macrostructure remained morphologically unchanged while the granular structure of starch was damaged. Maleimide grafting onto MCC and starch has the potential to turn them into thermally reversible materials for various applications such as debondable adhesive or coating.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"550 ","pages":"Article 109401"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621525000278","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Maleimide grafting onto polysaccharides via mild condition esterification and its impact on their structure
This study proposes an innovative approach to tailor the properties of two polysaccharides, microcrystalline cellulose (MCC) and potato starch, through chemical modification in dispersion. The methodology involves the grafting of 6-Maleimidohexanoic acid (6-MHA) moieties onto hydroxyl groups of the polysaccharides without dissolving them in order to keep their native structure preserved. To overcome the slow and inefficient reaction between carboxylic acids of 6-MHA and hydroxyl groups of the polysaccharides, a vinyl ester of 6-MHA was synthesized through the transvinylation of 6-MHA acid with vinyl acetate. The resulting 6-MHA ester was employed to introduce a new functionality to polysaccharides’ hydroxyl groups via transesterification, catalyzed by potassium carbonate. To enhance the reactivity, the polysaccharides were mercerized prior to modification process. The efficiency of the transesterification reaction between the vinyl ester of 6-MHA and the hydroxyl groups of the polysaccharides was confirmed using Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). Thermal behavior analysis was carried out using thermogravimetric analysis (TGA), while changes in crystallinity resulting from the modification were assessed through X-ray diffraction analysis (XRD). Finally, the impact of the modification on the morphology of polysaccharides was examined with environmental scanning electron microscopy (ESEM). Despite changes in microstructure, MCC kept its macrostructure remained morphologically unchanged while the granular structure of starch was damaged. Maleimide grafting onto MCC and starch has the potential to turn them into thermally reversible materials for various applications such as debondable adhesive or coating.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".