超级增强子通过诱导KPNA2/KPNB1的表达保护细胞免受C9orf72聚脯氨酸-精氨酸的毒性。

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Miaomiao Chen, Henglu Cui, Xiaoyu Zhang, Shuyan Ma, Jinjing Guo, Zhaoxiu Liu, Donghua Gu, Yihui Fan
{"title":"超级增强子通过诱导KPNA2/KPNB1的表达保护细胞免受C9orf72聚脯氨酸-精氨酸的毒性。","authors":"Miaomiao Chen,&nbsp;Henglu Cui,&nbsp;Xiaoyu Zhang,&nbsp;Shuyan Ma,&nbsp;Jinjing Guo,&nbsp;Zhaoxiu Liu,&nbsp;Donghua Gu,&nbsp;Yihui Fan","doi":"10.1002/cbf.70053","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Hexanucleotide repeat expansions in C9orf72 are the most common genetic mutation associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Dipeptide repeat (DPR) proteins, such as poly(proline–arginine) (polyPR) generated from G4C2 repeat expansions, have been shown to be highly toxic. In this study, PR20 was labeled with fluorescein isothiocyanate (FITC) to track its cellular localization. Several cell lines demonstrated survival under PR20 treatment by sequestering PR20 in the cytoplasm. Treatment with JQ-1 or Ivermectin (Iver) translocated PR20 into the nucleus, leading to cell death. Mechanistically, KPNA2/KPNB1 interacted with PR20 in the cytoplasm and hindered PR20 from entering the cell nucleus. Genetic silencing of KPNA2/KPNB1 converted PR20-resistant cells into PR20-sensitive cells. Treatment with JQ1 significantly reduced the protein levels of KPNA2/KPNB1, allowing PR20 to enter the nucleus. Overexpression of KPNA2 or KPNB1 effectively blocked cell death induced by co-treatment with JQ-1 and PR20. Our results indicate that super-enhancers shield cells from PR20 toxicity by upregulating the expression of KPNA2/KPNB1.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"43 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-Enhancer Protects Cells From Toxicity of C9orf72 Poly(proline–arginine) by Inducing the Expression of KPNA2/KPNB1\",\"authors\":\"Miaomiao Chen,&nbsp;Henglu Cui,&nbsp;Xiaoyu Zhang,&nbsp;Shuyan Ma,&nbsp;Jinjing Guo,&nbsp;Zhaoxiu Liu,&nbsp;Donghua Gu,&nbsp;Yihui Fan\",\"doi\":\"10.1002/cbf.70053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Hexanucleotide repeat expansions in C9orf72 are the most common genetic mutation associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Dipeptide repeat (DPR) proteins, such as poly(proline–arginine) (polyPR) generated from G4C2 repeat expansions, have been shown to be highly toxic. In this study, PR20 was labeled with fluorescein isothiocyanate (FITC) to track its cellular localization. Several cell lines demonstrated survival under PR20 treatment by sequestering PR20 in the cytoplasm. Treatment with JQ-1 or Ivermectin (Iver) translocated PR20 into the nucleus, leading to cell death. Mechanistically, KPNA2/KPNB1 interacted with PR20 in the cytoplasm and hindered PR20 from entering the cell nucleus. Genetic silencing of KPNA2/KPNB1 converted PR20-resistant cells into PR20-sensitive cells. Treatment with JQ1 significantly reduced the protein levels of KPNA2/KPNB1, allowing PR20 to enter the nucleus. Overexpression of KPNA2 or KPNB1 effectively blocked cell death induced by co-treatment with JQ-1 and PR20. Our results indicate that super-enhancers shield cells from PR20 toxicity by upregulating the expression of KPNA2/KPNB1.</p></div>\",\"PeriodicalId\":9669,\"journal\":{\"name\":\"Cell Biochemistry and Function\",\"volume\":\"43 2\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Function\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70053\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70053","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

C9orf72的六核苷酸重复扩增是与肌萎缩侧索硬化症(ALS)和额颞叶痴呆(FTD) (C9-ALS/FTD)相关的最常见的基因突变。二肽重复序列(DPR)蛋白,如由G4C2重复序列扩增产生的聚脯氨酸-精氨酸(polyypr),已被证明具有高毒性。在本研究中,用异硫氰酸荧光素(FITC)标记PR20以跟踪其细胞定位。通过将PR20隔离在细胞质中,一些细胞系在PR20处理下表现出存活。JQ-1或伊维菌素(Ivermectin)使PR20易位进入细胞核,导致细胞死亡。机制上,KPNA2/KPNB1在细胞质中与PR20相互作用,阻碍PR20进入细胞核。KPNA2/KPNB1基因沉默可将pr20抗性细胞转化为pr20敏感细胞。JQ1显著降低KPNA2/KPNB1蛋白水平,使PR20进入细胞核。过表达KPNA2或KPNB1可有效阻断JQ-1和PR20共处理诱导的细胞死亡。我们的研究结果表明,超级增强子通过上调KPNA2/KPNB1的表达来保护细胞免受PR20的毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super-Enhancer Protects Cells From Toxicity of C9orf72 Poly(proline–arginine) by Inducing the Expression of KPNA2/KPNB1

Hexanucleotide repeat expansions in C9orf72 are the most common genetic mutation associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Dipeptide repeat (DPR) proteins, such as poly(proline–arginine) (polyPR) generated from G4C2 repeat expansions, have been shown to be highly toxic. In this study, PR20 was labeled with fluorescein isothiocyanate (FITC) to track its cellular localization. Several cell lines demonstrated survival under PR20 treatment by sequestering PR20 in the cytoplasm. Treatment with JQ-1 or Ivermectin (Iver) translocated PR20 into the nucleus, leading to cell death. Mechanistically, KPNA2/KPNB1 interacted with PR20 in the cytoplasm and hindered PR20 from entering the cell nucleus. Genetic silencing of KPNA2/KPNB1 converted PR20-resistant cells into PR20-sensitive cells. Treatment with JQ1 significantly reduced the protein levels of KPNA2/KPNB1, allowing PR20 to enter the nucleus. Overexpression of KPNA2 or KPNB1 effectively blocked cell death induced by co-treatment with JQ-1 and PR20. Our results indicate that super-enhancers shield cells from PR20 toxicity by upregulating the expression of KPNA2/KPNB1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Function
Cell Biochemistry and Function 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease. The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信