Sweta Sarmah, Hannah Thi-Hong Hanh Truong, Gawain McColl, Richard Burke, Christen K. Mirth, Matthew D. W. Piper
{"title":"饮食锌限制决定果蝇母亲的寿命和繁殖权衡。","authors":"Sweta Sarmah, Hannah Thi-Hong Hanh Truong, Gawain McColl, Richard Burke, Christen K. Mirth, Matthew D. W. Piper","doi":"10.1111/acel.14498","DOIUrl":null,"url":null,"abstract":"<p>Dietary metal ions significantly influence the lifespan and reproduction of <i>Drosophila</i> females. In this study, we show that not adding any of the metal ions to the diet adversely affects reproduction and lifespan. By contrast, food with no added Zn negatively impacts reproduction but does not adversely affect maternal lifespan, indicating it can dictate resource reallocation between key fitness traits. Specifically, it indicates that female flies stop producing eggs to conserve their body Zn for somatic maintenance. Although these data show that flies can sense varying dietary Zn levels to adjust their physiology, they cannot maximise egg production when faced with a choice between food with no added Zn or food with sufficient Zn to support maximum reproduction. Nonetheless, they can choose to preferentially oviposit on Zn-containing food, perhaps indicating a strategy to assure offspring survival. We also uncovered a role for the <i>white</i> gene in sustaining high levels of egg viability when Zn is diluted in the diet. These insights into the role of dietary metal ions, particularly Zn, point to a central role for these dietary micronutrients to indicate environmental quality and so govern trade-offs between lifespan and reproduction in flies.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 5","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14498","citationCount":"0","resultStr":"{\"title\":\"Dietary Zinc Limitation Dictates Lifespan and Reproduction Trade-Offs of Drosophila Mothers\",\"authors\":\"Sweta Sarmah, Hannah Thi-Hong Hanh Truong, Gawain McColl, Richard Burke, Christen K. Mirth, Matthew D. W. Piper\",\"doi\":\"10.1111/acel.14498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dietary metal ions significantly influence the lifespan and reproduction of <i>Drosophila</i> females. In this study, we show that not adding any of the metal ions to the diet adversely affects reproduction and lifespan. By contrast, food with no added Zn negatively impacts reproduction but does not adversely affect maternal lifespan, indicating it can dictate resource reallocation between key fitness traits. Specifically, it indicates that female flies stop producing eggs to conserve their body Zn for somatic maintenance. Although these data show that flies can sense varying dietary Zn levels to adjust their physiology, they cannot maximise egg production when faced with a choice between food with no added Zn or food with sufficient Zn to support maximum reproduction. Nonetheless, they can choose to preferentially oviposit on Zn-containing food, perhaps indicating a strategy to assure offspring survival. We also uncovered a role for the <i>white</i> gene in sustaining high levels of egg viability when Zn is diluted in the diet. These insights into the role of dietary metal ions, particularly Zn, point to a central role for these dietary micronutrients to indicate environmental quality and so govern trade-offs between lifespan and reproduction in flies.</p>\",\"PeriodicalId\":55543,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"24 5\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14498\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.14498\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.14498","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Dietary Zinc Limitation Dictates Lifespan and Reproduction Trade-Offs of Drosophila Mothers
Dietary metal ions significantly influence the lifespan and reproduction of Drosophila females. In this study, we show that not adding any of the metal ions to the diet adversely affects reproduction and lifespan. By contrast, food with no added Zn negatively impacts reproduction but does not adversely affect maternal lifespan, indicating it can dictate resource reallocation between key fitness traits. Specifically, it indicates that female flies stop producing eggs to conserve their body Zn for somatic maintenance. Although these data show that flies can sense varying dietary Zn levels to adjust their physiology, they cannot maximise egg production when faced with a choice between food with no added Zn or food with sufficient Zn to support maximum reproduction. Nonetheless, they can choose to preferentially oviposit on Zn-containing food, perhaps indicating a strategy to assure offspring survival. We also uncovered a role for the white gene in sustaining high levels of egg viability when Zn is diluted in the diet. These insights into the role of dietary metal ions, particularly Zn, point to a central role for these dietary micronutrients to indicate environmental quality and so govern trade-offs between lifespan and reproduction in flies.
期刊介绍:
Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.