FLAD1拷贝数扩增通过脂质代谢促进三阴性乳腺癌的进展

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiao-Qing Song, Tian-Jian Yu, Yang Ou-Yang, Jia-Han Ding, Yi-Zhou Jiang, Zhi-Ming Shao, Yi Xiao
{"title":"FLAD1拷贝数扩增通过脂质代谢促进三阴性乳腺癌的进展","authors":"Xiao-Qing Song, Tian-Jian Yu, Yang Ou-Yang, Jia-Han Ding, Yi-Zhou Jiang, Zhi-Ming Shao, Yi Xiao","doi":"10.1038/s41467-025-56458-w","DOIUrl":null,"url":null,"abstract":"<p>Triple-negative breast cancer (TNBC) is known for frequent copy number alterations (CNAs) and metabolic reprogramming. However, the mechanism by which CNAs of metabolic genes drive distinct metabolic reprogramming and affect disease progression remains unclear. Through an integrated analysis of our TNBC multiomic dataset (n = 465) and subsequent experimental validation, we identify copy number amplification of the metabolic gene flavin-adenine dinucleotide synthetase 1 (<i>FLAD1</i>) as a crucial genetic event that drives TNBC progression. Mechanistically, FLAD1, but not its enzymatically inactive mutant, upregulates the enzymatic activity of FAD-dependent lysine-specific demethylase 1 (LSD1). LSD1 subsequently promotes the expression of sterol regulatory element-binding protein 1 (<i>SREBP1</i>) by demethylating dimethyl histone H3 lysine 9 (H3K9me2). The upregulation of <i>SREBP1</i> enhances the expression of lipid biosynthesis genes, ultimately facilitating the progression of TNBC. Clinically, pharmacological inhibition of the FLAD1/LSD1/SREBP1 axis effectively suppresses FLAD1-induced tumor progression. Moreover, LSD1 inhibitor enhances the therapeutic effect of doxorubicin and sacituzumab govitecan (SG). In conclusion, our findings reveal the CNA-derived oncogenic signalling axis of FLAD1/LSD1/SREBP1 and present a promising treatment strategy for TNBC.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"125 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copy number amplification of FLAD1 promotes the progression of triple-negative breast cancer through lipid metabolism\",\"authors\":\"Xiao-Qing Song, Tian-Jian Yu, Yang Ou-Yang, Jia-Han Ding, Yi-Zhou Jiang, Zhi-Ming Shao, Yi Xiao\",\"doi\":\"10.1038/s41467-025-56458-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Triple-negative breast cancer (TNBC) is known for frequent copy number alterations (CNAs) and metabolic reprogramming. However, the mechanism by which CNAs of metabolic genes drive distinct metabolic reprogramming and affect disease progression remains unclear. Through an integrated analysis of our TNBC multiomic dataset (n = 465) and subsequent experimental validation, we identify copy number amplification of the metabolic gene flavin-adenine dinucleotide synthetase 1 (<i>FLAD1</i>) as a crucial genetic event that drives TNBC progression. Mechanistically, FLAD1, but not its enzymatically inactive mutant, upregulates the enzymatic activity of FAD-dependent lysine-specific demethylase 1 (LSD1). LSD1 subsequently promotes the expression of sterol regulatory element-binding protein 1 (<i>SREBP1</i>) by demethylating dimethyl histone H3 lysine 9 (H3K9me2). The upregulation of <i>SREBP1</i> enhances the expression of lipid biosynthesis genes, ultimately facilitating the progression of TNBC. Clinically, pharmacological inhibition of the FLAD1/LSD1/SREBP1 axis effectively suppresses FLAD1-induced tumor progression. Moreover, LSD1 inhibitor enhances the therapeutic effect of doxorubicin and sacituzumab govitecan (SG). In conclusion, our findings reveal the CNA-derived oncogenic signalling axis of FLAD1/LSD1/SREBP1 and present a promising treatment strategy for TNBC.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56458-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56458-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

三阴性乳腺癌(TNBC)以频繁的拷贝数改变(CNAs)和代谢重编程而闻名。然而,代谢基因的CNAs驱动不同的代谢重编程并影响疾病进展的机制尚不清楚。通过对我们的TNBC多组数据集(n = 465)的综合分析和随后的实验验证,我们确定了代谢基因黄素腺嘌呤二核苷酸合成酶1 (FLAD1)的拷贝数扩增是驱动TNBC进展的关键遗传事件。从机制上讲,FLAD1,而不是它的酶失活突变体,上调fad依赖性赖氨酸特异性去甲基酶1 (LSD1)的酶活性。LSD1随后通过去甲基化二甲基组蛋白H3赖氨酸9 (H3K9me2)促进甾醇调节元件结合蛋白1 (SREBP1)的表达。SREBP1的上调可增强脂质生物合成基因的表达,最终促进TNBC的发展。临床上,药物抑制FLAD1/LSD1/SREBP1轴可有效抑制FLAD1诱导的肿瘤进展。此外,LSD1抑制剂可增强阿霉素和sacituzumab govitecan (SG)的治疗效果。总之,我们的研究结果揭示了FLAD1/LSD1/SREBP1的cnna衍生的致癌信号轴,并为TNBC提供了一个有希望的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Copy number amplification of FLAD1 promotes the progression of triple-negative breast cancer through lipid metabolism

Copy number amplification of FLAD1 promotes the progression of triple-negative breast cancer through lipid metabolism

Triple-negative breast cancer (TNBC) is known for frequent copy number alterations (CNAs) and metabolic reprogramming. However, the mechanism by which CNAs of metabolic genes drive distinct metabolic reprogramming and affect disease progression remains unclear. Through an integrated analysis of our TNBC multiomic dataset (n = 465) and subsequent experimental validation, we identify copy number amplification of the metabolic gene flavin-adenine dinucleotide synthetase 1 (FLAD1) as a crucial genetic event that drives TNBC progression. Mechanistically, FLAD1, but not its enzymatically inactive mutant, upregulates the enzymatic activity of FAD-dependent lysine-specific demethylase 1 (LSD1). LSD1 subsequently promotes the expression of sterol regulatory element-binding protein 1 (SREBP1) by demethylating dimethyl histone H3 lysine 9 (H3K9me2). The upregulation of SREBP1 enhances the expression of lipid biosynthesis genes, ultimately facilitating the progression of TNBC. Clinically, pharmacological inhibition of the FLAD1/LSD1/SREBP1 axis effectively suppresses FLAD1-induced tumor progression. Moreover, LSD1 inhibitor enhances the therapeutic effect of doxorubicin and sacituzumab govitecan (SG). In conclusion, our findings reveal the CNA-derived oncogenic signalling axis of FLAD1/LSD1/SREBP1 and present a promising treatment strategy for TNBC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信