Yu-Chan Chih, Amelie C. Dietsch, Philipp Koopmann, Xiujian Ma, Dennis A. Agardy, Binghao Zhao, Alice De Roia, Alexandros Kourtesakis, Michael Kilian, Christopher Krämer, Abigail K. Suwala, Miriam Stenzinger, Halvard Boenig, Agnieszka Blum, Victor Murcia Pienkowski, Kuralay Aman, Jonas P. Becker, Henrike Feldmann, Theresa Bunse, Richard Harbottle, Angelika B. Riemer, Hai-Kun Liu, Nima Etminan, Felix Sahm, Miriam Ratliff, Wolfgang Wick, Michael Platten, Edward W. Green, Lukas Bunse
{"title":"针对胶质母细胞瘤干细胞抗原的疫苗诱导T细胞受体T细胞治疗","authors":"Yu-Chan Chih, Amelie C. Dietsch, Philipp Koopmann, Xiujian Ma, Dennis A. Agardy, Binghao Zhao, Alice De Roia, Alexandros Kourtesakis, Michael Kilian, Christopher Krämer, Abigail K. Suwala, Miriam Stenzinger, Halvard Boenig, Agnieszka Blum, Victor Murcia Pienkowski, Kuralay Aman, Jonas P. Becker, Henrike Feldmann, Theresa Bunse, Richard Harbottle, Angelika B. Riemer, Hai-Kun Liu, Nima Etminan, Felix Sahm, Miriam Ratliff, Wolfgang Wick, Michael Platten, Edward W. Green, Lukas Bunse","doi":"10.1038/s41467-025-56547-w","DOIUrl":null,"url":null,"abstract":"<p>T cell receptor-engineered T cells (TCR-T) could be advantageous in glioblastoma by allowing safe and ubiquitous targeting of the glioblastoma-derived peptidome. Protein tyrosine phosphatase receptor type Z1 (PTPRZ1), is a clinically targetable glioblastoma antigen associated with glioblastoma cell stemness. Here, we identify a therapeutic HLA-A*02-restricted PTPRZ1-reactive TCR retrieved from a vaccinated glioblastoma patient. Single-cell sequencing of primary brain tumors shows <i>PTPRZ1</i> overexpression in malignant cells, especially in glioblastoma stem cells (GSCs) and astrocyte-like cells. The validated vaccine-induced TCR recognizes the endogenously processed antigen without off-target cross-reactivity. PTPRZ1-specific TCR-T (PTPRZ1-TCR-T) kill target cells antigen-specifically, and in murine experimental brain tumors, their combined intravenous and intracerebroventricular administration is efficacious. PTPRZ1-TCR-T maintain stem cell memory phenotype in vitro and in vivo and lyse all examined HLA-A*02<sup>+</sup> primary glioblastoma cell lines with a preference for GSCs and astrocyte-like cells. In summary, we demonstrate the proof of principle to employ TCR-T to treat glioblastoma.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"77 4 Pt 1 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vaccine-induced T cell receptor T cell therapy targeting a glioblastoma stemness antigen\",\"authors\":\"Yu-Chan Chih, Amelie C. Dietsch, Philipp Koopmann, Xiujian Ma, Dennis A. Agardy, Binghao Zhao, Alice De Roia, Alexandros Kourtesakis, Michael Kilian, Christopher Krämer, Abigail K. Suwala, Miriam Stenzinger, Halvard Boenig, Agnieszka Blum, Victor Murcia Pienkowski, Kuralay Aman, Jonas P. Becker, Henrike Feldmann, Theresa Bunse, Richard Harbottle, Angelika B. Riemer, Hai-Kun Liu, Nima Etminan, Felix Sahm, Miriam Ratliff, Wolfgang Wick, Michael Platten, Edward W. Green, Lukas Bunse\",\"doi\":\"10.1038/s41467-025-56547-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>T cell receptor-engineered T cells (TCR-T) could be advantageous in glioblastoma by allowing safe and ubiquitous targeting of the glioblastoma-derived peptidome. Protein tyrosine phosphatase receptor type Z1 (PTPRZ1), is a clinically targetable glioblastoma antigen associated with glioblastoma cell stemness. Here, we identify a therapeutic HLA-A*02-restricted PTPRZ1-reactive TCR retrieved from a vaccinated glioblastoma patient. Single-cell sequencing of primary brain tumors shows <i>PTPRZ1</i> overexpression in malignant cells, especially in glioblastoma stem cells (GSCs) and astrocyte-like cells. The validated vaccine-induced TCR recognizes the endogenously processed antigen without off-target cross-reactivity. PTPRZ1-specific TCR-T (PTPRZ1-TCR-T) kill target cells antigen-specifically, and in murine experimental brain tumors, their combined intravenous and intracerebroventricular administration is efficacious. PTPRZ1-TCR-T maintain stem cell memory phenotype in vitro and in vivo and lyse all examined HLA-A*02<sup>+</sup> primary glioblastoma cell lines with a preference for GSCs and astrocyte-like cells. In summary, we demonstrate the proof of principle to employ TCR-T to treat glioblastoma.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"77 4 Pt 1 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56547-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56547-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Vaccine-induced T cell receptor T cell therapy targeting a glioblastoma stemness antigen
T cell receptor-engineered T cells (TCR-T) could be advantageous in glioblastoma by allowing safe and ubiquitous targeting of the glioblastoma-derived peptidome. Protein tyrosine phosphatase receptor type Z1 (PTPRZ1), is a clinically targetable glioblastoma antigen associated with glioblastoma cell stemness. Here, we identify a therapeutic HLA-A*02-restricted PTPRZ1-reactive TCR retrieved from a vaccinated glioblastoma patient. Single-cell sequencing of primary brain tumors shows PTPRZ1 overexpression in malignant cells, especially in glioblastoma stem cells (GSCs) and astrocyte-like cells. The validated vaccine-induced TCR recognizes the endogenously processed antigen without off-target cross-reactivity. PTPRZ1-specific TCR-T (PTPRZ1-TCR-T) kill target cells antigen-specifically, and in murine experimental brain tumors, their combined intravenous and intracerebroventricular administration is efficacious. PTPRZ1-TCR-T maintain stem cell memory phenotype in vitro and in vivo and lyse all examined HLA-A*02+ primary glioblastoma cell lines with a preference for GSCs and astrocyte-like cells. In summary, we demonstrate the proof of principle to employ TCR-T to treat glioblastoma.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.