钙钛矿纳米晶体超晶格中激子的环境辅助量子输运

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Daria D. Blach, Victoria A. Lumsargis-Roth, Chern Chuang, Daniel E. Clark, Shibin Deng, Olivia F. Williams, Christina W. Li, Jianshu Cao, Libai Huang
{"title":"钙钛矿纳米晶体超晶格中激子的环境辅助量子输运","authors":"Daria D. Blach, Victoria A. Lumsargis-Roth, Chern Chuang, Daniel E. Clark, Shibin Deng, Olivia F. Williams, Christina W. Li, Jianshu Cao, Libai Huang","doi":"10.1038/s41467-024-55812-8","DOIUrl":null,"url":null,"abstract":"<p>Transport of energy carriers in solid-state materials is determined by their wavefunctions and interactions with the environment. While quantum transport theory has predicted distinct transport in the intermediate coupling regime resulting from the intricate interplay between coherent wave-like and incoherent particle-like mechanisms, these predictions are awaiting experimental evidence. Here we demonstrate quantum transport signatures in perovskite nanocrystal superlattices by imaging exciton propagation with high spatial and temporal resolutions over 7-298 K. At 7 K, coherent propagation of the excitons dominates, with transient ballistic motion within a coherence length of up to 40 nanocrystal sites. The interference of the wave-like motion leads to Anderson Localization in the long-time limit. As temperature increases, a peak in the long-time diffusion constant is observed at a temperature where static disorder and dephasing are balanced, which substantiates evidence for environment-assisted quantum transport. Our results connect theoretical predictions and experiments using a stochastic Anderson localization model, highlighting perovskite nanocrystals as promising building blocks for quantum materials.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"39 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environment-assisted quantum transport of excitons in perovskite nanocrystal superlattices\",\"authors\":\"Daria D. Blach, Victoria A. Lumsargis-Roth, Chern Chuang, Daniel E. Clark, Shibin Deng, Olivia F. Williams, Christina W. Li, Jianshu Cao, Libai Huang\",\"doi\":\"10.1038/s41467-024-55812-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transport of energy carriers in solid-state materials is determined by their wavefunctions and interactions with the environment. While quantum transport theory has predicted distinct transport in the intermediate coupling regime resulting from the intricate interplay between coherent wave-like and incoherent particle-like mechanisms, these predictions are awaiting experimental evidence. Here we demonstrate quantum transport signatures in perovskite nanocrystal superlattices by imaging exciton propagation with high spatial and temporal resolutions over 7-298 K. At 7 K, coherent propagation of the excitons dominates, with transient ballistic motion within a coherence length of up to 40 nanocrystal sites. The interference of the wave-like motion leads to Anderson Localization in the long-time limit. As temperature increases, a peak in the long-time diffusion constant is observed at a temperature where static disorder and dephasing are balanced, which substantiates evidence for environment-assisted quantum transport. Our results connect theoretical predictions and experiments using a stochastic Anderson localization model, highlighting perovskite nanocrystals as promising building blocks for quantum materials.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55812-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55812-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

固体材料中载流子的输运是由它们的波函数和与环境的相互作用决定的。虽然量子输运理论已经预测了由于相干类波和非相干类粒子机制之间复杂的相互作用而导致的中间耦合状态下的不同输运,但这些预测仍在等待实验证据。在这里,我们展示了钙钛矿纳米晶体超晶格中的量子输运特征,在7-298 K的高空间和时间分辨率下成像激子传播。在7 K时,激子的相干传播占主导地位,在相干长度达40纳米晶体位的瞬态弹道运动中。波状运动的干涉导致长时间极限的安德森局域化。随着温度的升高,在静态失序和失相平衡的温度下观察到长时间扩散常数的峰值,这为环境辅助量子输运提供了证据。我们的研究结果使用随机安德森局域化模型将理论预测和实验联系起来,突出了钙钛矿纳米晶体作为量子材料的有前途的基石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Environment-assisted quantum transport of excitons in perovskite nanocrystal superlattices

Environment-assisted quantum transport of excitons in perovskite nanocrystal superlattices

Transport of energy carriers in solid-state materials is determined by their wavefunctions and interactions with the environment. While quantum transport theory has predicted distinct transport in the intermediate coupling regime resulting from the intricate interplay between coherent wave-like and incoherent particle-like mechanisms, these predictions are awaiting experimental evidence. Here we demonstrate quantum transport signatures in perovskite nanocrystal superlattices by imaging exciton propagation with high spatial and temporal resolutions over 7-298 K. At 7 K, coherent propagation of the excitons dominates, with transient ballistic motion within a coherence length of up to 40 nanocrystal sites. The interference of the wave-like motion leads to Anderson Localization in the long-time limit. As temperature increases, a peak in the long-time diffusion constant is observed at a temperature where static disorder and dephasing are balanced, which substantiates evidence for environment-assisted quantum transport. Our results connect theoretical predictions and experiments using a stochastic Anderson localization model, highlighting perovskite nanocrystals as promising building blocks for quantum materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信