高性能短波红外探测器TexSe1-x孔选择层的分子工程研究

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mingxin Hu, Yanjun Duan, Shengren Li, Lin Yang, Wenxin Dong, Wei Dang, Zheng Zhang, Jiaqi Liu, Zhiqiang Li
{"title":"高性能短波红外探测器TexSe1-x孔选择层的分子工程研究","authors":"Mingxin Hu, Yanjun Duan, Shengren Li, Lin Yang, Wenxin Dong, Wei Dang, Zheng Zhang, Jiaqi Liu, Zhiqiang Li","doi":"10.1021/acsphotonics.4c01967","DOIUrl":null,"url":null,"abstract":"Short-wavelength infrared (SWIR) photodetectors are essential to human activities in military and civilian fields, including night vision, remote sensing, telecommunication, medical applications, safety monitoring, and mineral identification. Recently, the tellurium–selenium (Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub>) alloy has demonstrated considerable potential in infrared photodetection. However, the photodetectors still suffer from poor device performance. Herein, we present an interfacial engineering strategy to enhance carrier transport in the Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub> photodetector by utilizing a self-assembled monolayer (SAM) of [2-(3,6-dimethoxy-9<i>H</i>-carbazol-9-yl)ethyl]phosphonic acid (MeO-2PACz) as an interface layer between the Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub> active layer and the poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) hole transport layer. Density functional theory calculations and in-depth XPS analysis illustrate the occurrence of charge transfer and the formation of P–Se bonds at the Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub>/SAM interface. This interfacial engineering approach leads to a more homogeneous surface potential, an increased built-in voltage, improved energy band alignment, and superior photoelectronic characteristics. The self-powered Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub> photodetector exhibits an external quantum efficiency (EQE) of 46% ± 1% at 980 nm and 19.7% ± 0.5% at 1320 nm. This makes the first demonstration of Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub> photodiode achieving a high responsivity of 0.49 A W<sup>–1</sup>, along with a record total noise determined realistic detectivity <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;*&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.162em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.935em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.651em, 1001.88em, 2.957em, -999.997em); top: -2.554em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Main;\">(</span><span><span style=\"display: inline-block; position: relative; width: 1.253em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.185em, 1000.74em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝐷</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.469em, 1000.46em, 4.151em, -999.997em); top: -4.372em; left: 0.798em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">∗</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.355em, 1000.46em, 4.151em, -999.997em); top: -3.747em; left: 0.798em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">2</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main;\">)</span></span><span style=\"display: inline-block; width: 0px; height: 2.56em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.309em; border-left: 0px solid; width: 0px; height: 1.191em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>*</mo></mrow></msubsup><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mo stretchy=\"false\">(</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>*</mo></mrow></msubsup><mo stretchy=\"false\">)</mo></math></script> of 7.69 × 10<sup>10</sup> Jones (and 5.75 × 10<sup>11</sup> Jones when considering only shot noise) at 1319 nm, combined with an ultrafast response time of &lt;547 ns (as measured under femtosecond pulsed laser illumination). Moreover, the photocurrent of this photodetector remains almost unchanged even after 30 days of storage.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"10 213 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Engineering of Hole-Selective Layer of TexSe1–x for High-Performance Short-Wave Infrared Photodetectors\",\"authors\":\"Mingxin Hu, Yanjun Duan, Shengren Li, Lin Yang, Wenxin Dong, Wei Dang, Zheng Zhang, Jiaqi Liu, Zhiqiang Li\",\"doi\":\"10.1021/acsphotonics.4c01967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short-wavelength infrared (SWIR) photodetectors are essential to human activities in military and civilian fields, including night vision, remote sensing, telecommunication, medical applications, safety monitoring, and mineral identification. Recently, the tellurium–selenium (Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub>) alloy has demonstrated considerable potential in infrared photodetection. However, the photodetectors still suffer from poor device performance. Herein, we present an interfacial engineering strategy to enhance carrier transport in the Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub> photodetector by utilizing a self-assembled monolayer (SAM) of [2-(3,6-dimethoxy-9<i>H</i>-carbazol-9-yl)ethyl]phosphonic acid (MeO-2PACz) as an interface layer between the Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub> active layer and the poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) hole transport layer. Density functional theory calculations and in-depth XPS analysis illustrate the occurrence of charge transfer and the formation of P–Se bonds at the Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub>/SAM interface. This interfacial engineering approach leads to a more homogeneous surface potential, an increased built-in voltage, improved energy band alignment, and superior photoelectronic characteristics. The self-powered Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub> photodetector exhibits an external quantum efficiency (EQE) of 46% ± 1% at 980 nm and 19.7% ± 0.5% at 1320 nm. This makes the first demonstration of Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub> photodiode achieving a high responsivity of 0.49 A W<sup>–1</sup>, along with a record total noise determined realistic detectivity <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;mo stretchy=\\\"false\\\"&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;*&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo stretchy=\\\"false\\\"&gt;)&lt;/mo&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 2.162em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 1.935em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(1.651em, 1001.88em, 2.957em, -999.997em); top: -2.554em; left: 0em;\\\"><span><span style=\\\"font-family: STIXMathJax_Main;\\\">(</span><span><span style=\\\"display: inline-block; position: relative; width: 1.253em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.185em, 1000.74em, 4.151em, -999.997em); top: -3.974em; left: 0em;\\\"><span><span style=\\\"font-family: STIXMathJax_Normal-italic;\\\">𝐷</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.469em, 1000.46em, 4.151em, -999.997em); top: -4.372em; left: 0.798em;\\\"><span><span style=\\\"font-size: 70.7%; font-family: STIXMathJax_Main;\\\">∗</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.355em, 1000.46em, 4.151em, -999.997em); top: -3.747em; left: 0.798em;\\\"><span><span style=\\\"font-size: 70.7%; font-family: STIXMathJax_Main;\\\">2</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span><span style=\\\"font-family: STIXMathJax_Main;\\\">)</span></span><span style=\\\"display: inline-block; width: 0px; height: 2.56em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.309em; border-left: 0px solid; width: 0px; height: 1.191em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>*</mo></mrow></msubsup><mo stretchy=\\\"false\\\">)</mo></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><mo stretchy=\\\"false\\\">(</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>*</mo></mrow></msubsup><mo stretchy=\\\"false\\\">)</mo></math></script> of 7.69 × 10<sup>10</sup> Jones (and 5.75 × 10<sup>11</sup> Jones when considering only shot noise) at 1319 nm, combined with an ultrafast response time of &lt;547 ns (as measured under femtosecond pulsed laser illumination). Moreover, the photocurrent of this photodetector remains almost unchanged even after 30 days of storage.\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"10 213 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphotonics.4c01967\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01967","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

短波长红外(SWIR)光电探测器对军事和民用领域的人类活动至关重要,包括夜视、遥感、电信、医疗应用、安全监测和矿物识别。近年来,碲硒(TexSe1-x)合金在红外光探测方面显示出相当大的潜力。然而,光电探测器仍然存在器件性能不佳的问题。本文提出了一种界面工程策略,通过利用[2-(3,6-二甲氧基- 9h -咔唑-9-基)乙基]膦酸(MeO-2PACz)自组装单层(SAM)作为TexSe1-x活性层与聚[双(4-苯基)(2,4,6-三甲基苯基)胺(PTAA)空穴传输层之间的界面层,增强TexSe1-x光电探测器中的载流子传输。密度泛函理论计算和深入的XPS分析表明,在TexSe1-x /SAM界面上发生了电荷转移和P-Se键的形成。这种界面工程方法导致了更均匀的表面电位,增加了内置电压,改善了能带对准,以及优越的光电特性。自供电的TexSe1-x光电探测器在980 nm处的外量子效率(EQE)为46%±1%,在1320 nm处为19.7%±0.5%。这使得TexSe1-x光电二极管的首次演示实现了0.49 a W-1的高响应率,以及在1319 nm处记录的总噪声确定的实际探测率(𝐷∗2)(D2*)(D2*)为7.69 × 1010 Jones(仅考虑射击噪声时为5.75 × 1011 Jones),并结合了超快的响应时间<;547 ns(在飞秒脉冲激光照射下测量)。此外,该光电探测器的光电流在储存30天后几乎保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular Engineering of Hole-Selective Layer of TexSe1–x for High-Performance Short-Wave Infrared Photodetectors

Molecular Engineering of Hole-Selective Layer of TexSe1–x for High-Performance Short-Wave Infrared Photodetectors
Short-wavelength infrared (SWIR) photodetectors are essential to human activities in military and civilian fields, including night vision, remote sensing, telecommunication, medical applications, safety monitoring, and mineral identification. Recently, the tellurium–selenium (TexSe1–x) alloy has demonstrated considerable potential in infrared photodetection. However, the photodetectors still suffer from poor device performance. Herein, we present an interfacial engineering strategy to enhance carrier transport in the TexSe1–x photodetector by utilizing a self-assembled monolayer (SAM) of [2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid (MeO-2PACz) as an interface layer between the TexSe1–x active layer and the poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) hole transport layer. Density functional theory calculations and in-depth XPS analysis illustrate the occurrence of charge transfer and the formation of P–Se bonds at the TexSe1–x/SAM interface. This interfacial engineering approach leads to a more homogeneous surface potential, an increased built-in voltage, improved energy band alignment, and superior photoelectronic characteristics. The self-powered TexSe1–x photodetector exhibits an external quantum efficiency (EQE) of 46% ± 1% at 980 nm and 19.7% ± 0.5% at 1320 nm. This makes the first demonstration of TexSe1–x photodiode achieving a high responsivity of 0.49 A W–1, along with a record total noise determined realistic detectivity (D2*) of 7.69 × 1010 Jones (and 5.75 × 1011 Jones when considering only shot noise) at 1319 nm, combined with an ultrafast response time of <547 ns (as measured under femtosecond pulsed laser illumination). Moreover, the photocurrent of this photodetector remains almost unchanged even after 30 days of storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信