微量的铂单原子选择性地负载在锐钛矿微(101)面上,使得光催化制氢的利用效率很高

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shanshan Qin, Nikita Denisov, Benedict Osuagwu, Jan Kolařík, Bidyut Bikash Sarma, Zdeněk Baďura, Patrik Schmuki
{"title":"微量的铂单原子选择性地负载在锐钛矿微(101)面上,使得光催化制氢的利用效率很高","authors":"Shanshan Qin,&nbsp;Nikita Denisov,&nbsp;Benedict Osuagwu,&nbsp;Jan Kolařík,&nbsp;Bidyut Bikash Sarma,&nbsp;Zdeněk Baďura,&nbsp;Patrik Schmuki","doi":"10.1002/adfm.202423088","DOIUrl":null,"url":null,"abstract":"<p>Pt single atoms (SAs) on TiO<sub>2</sub> have been identified as effective co-catalysts in solar photocatalytic H<sub>2</sub> production. In this study, Pt SAs is deposited on single crystal anatase nanosheets (NSs) with minor (101) and major (001) facets and expose them to various thermal treatments in air, Ar, and Ar-H<sub>2</sub> environments. It is found that through Ar-H<sub>2</sub> annealing Pt-species can be accumulated exclusively on the minor (101) facets, i.e., they can be concentrated selectively on the facet where electron exit occurs. This optimally establishes a high photocatalytic H<sub>2</sub> evolution efficiency for an extremely low overall Pt SA loading of ≈0.005 wt.% on the anatase crystallites. For this most active SA placement, 11.7 mmol g<sup>−1</sup> h<sup>−1</sup> H<sub>2</sub> production is obtained with a turnover frequency (TOF) up to 253 #H<sub>2</sub> site<sup>−1</sup> s<sup>−1</sup>. Note that the corresponding Pt SAs density of 3.1 × 10<sup>4</sup> atoms µm<sup>−2</sup> is established by loading from only 0.2 µ<span>m</span> Pt solution. These findings demonstrate that placing a very low density of Pt SAs as an electron transfer co-catalyst onto the electron exit sites of a light-harvesting structure (i.e., there where it is needed) can provide a most active photocatalytic structure with an outstanding Pt utilization.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 24","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202423088","citationCount":"0","resultStr":"{\"title\":\"Minuscule Amounts of Pt Single Atoms Selectively Loaded on Minor (101) Facet of Anatase Crystallites Enables Outstanding Utilization Efficiency for Photocatalytic H2 Production\",\"authors\":\"Shanshan Qin,&nbsp;Nikita Denisov,&nbsp;Benedict Osuagwu,&nbsp;Jan Kolařík,&nbsp;Bidyut Bikash Sarma,&nbsp;Zdeněk Baďura,&nbsp;Patrik Schmuki\",\"doi\":\"10.1002/adfm.202423088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pt single atoms (SAs) on TiO<sub>2</sub> have been identified as effective co-catalysts in solar photocatalytic H<sub>2</sub> production. In this study, Pt SAs is deposited on single crystal anatase nanosheets (NSs) with minor (101) and major (001) facets and expose them to various thermal treatments in air, Ar, and Ar-H<sub>2</sub> environments. It is found that through Ar-H<sub>2</sub> annealing Pt-species can be accumulated exclusively on the minor (101) facets, i.e., they can be concentrated selectively on the facet where electron exit occurs. This optimally establishes a high photocatalytic H<sub>2</sub> evolution efficiency for an extremely low overall Pt SA loading of ≈0.005 wt.% on the anatase crystallites. For this most active SA placement, 11.7 mmol g<sup>−1</sup> h<sup>−1</sup> H<sub>2</sub> production is obtained with a turnover frequency (TOF) up to 253 #H<sub>2</sub> site<sup>−1</sup> s<sup>−1</sup>. Note that the corresponding Pt SAs density of 3.1 × 10<sup>4</sup> atoms µm<sup>−2</sup> is established by loading from only 0.2 µ<span>m</span> Pt solution. These findings demonstrate that placing a very low density of Pt SAs as an electron transfer co-catalyst onto the electron exit sites of a light-harvesting structure (i.e., there where it is needed) can provide a most active photocatalytic structure with an outstanding Pt utilization.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 24\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202423088\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202423088\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202423088","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

TiO2上的Pt单原子(SAs)已被确定为太阳能光催化制氢的有效共催化剂。在这项研究中,铂SAs被沉积在具有次要(101)和主要(001)面的单晶锐钛矿纳米片(NSs)上,并将其暴露在空气、Ar和Ar‐H2环境中进行各种热处理。研究发现,通过Ar - H2退火,Pt -物种可以完全积聚在次要(101)面,即它们可以选择性地集中在发生电子出口的面。在锐钛矿晶体上,铂SA的总负载为≈0.005 wt.%,而光催化析氢效率很高。对于这种最活跃的SA放置,可获得11.7 mmol g−1 h−1 H2产量,转换频率(TOF)高达253 #H2位点−1 s−1。请注意,对应的Pt SAs密度为3.1 × 104个原子µm−2,仅从0.2µm的Pt溶液中加载即可建立。这些发现表明,将极低密度的Pt sa作为电子转移共催化剂放置在光捕获结构的电子出口位点(即需要的地方)可以提供最活跃的光催化结构,并具有出色的Pt利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Minuscule Amounts of Pt Single Atoms Selectively Loaded on Minor (101) Facet of Anatase Crystallites Enables Outstanding Utilization Efficiency for Photocatalytic H2 Production

Minuscule Amounts of Pt Single Atoms Selectively Loaded on Minor (101) Facet of Anatase Crystallites Enables Outstanding Utilization Efficiency for Photocatalytic H2 Production

Minuscule Amounts of Pt Single Atoms Selectively Loaded on Minor (101) Facet of Anatase Crystallites Enables Outstanding Utilization Efficiency for Photocatalytic H2 Production

Pt single atoms (SAs) on TiO2 have been identified as effective co-catalysts in solar photocatalytic H2 production. In this study, Pt SAs is deposited on single crystal anatase nanosheets (NSs) with minor (101) and major (001) facets and expose them to various thermal treatments in air, Ar, and Ar-H2 environments. It is found that through Ar-H2 annealing Pt-species can be accumulated exclusively on the minor (101) facets, i.e., they can be concentrated selectively on the facet where electron exit occurs. This optimally establishes a high photocatalytic H2 evolution efficiency for an extremely low overall Pt SA loading of ≈0.005 wt.% on the anatase crystallites. For this most active SA placement, 11.7 mmol g−1 h−1 H2 production is obtained with a turnover frequency (TOF) up to 253 #H2 site−1 s−1. Note that the corresponding Pt SAs density of 3.1 × 104 atoms µm−2 is established by loading from only 0.2 µm Pt solution. These findings demonstrate that placing a very low density of Pt SAs as an electron transfer co-catalyst onto the electron exit sites of a light-harvesting structure (i.e., there where it is needed) can provide a most active photocatalytic structure with an outstanding Pt utilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信