{"title":"来自iii型跷跷板框架的不对称长寿命暗物质和纤生现象","authors":"Satyabrata Mahapatra, Partha Kumar Paul, Narendra Sahu, Prashant Shukla","doi":"10.1103/physrevd.111.015043","DOIUrl":null,"url":null,"abstract":"We propose a simple model in the type-III seesaw framework to explain the neutrino mass, asymmetric dark matter (DM), and baryon asymmetry of the Universe. We extend the Standard Model with a vectorlike singlet lepton (χ</a:mi></a:math>) and a hypercharge zero scalar triplet (<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi mathvariant=\"normal\">Δ</c:mi></c:math>) in addition to three hypercharge zero triplet fermions (<f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:msub><f:mi mathvariant=\"normal\">Σ</f:mi><f:mi>i</f:mi></f:msub><f:mo>,</f:mo><f:mi>i</f:mi><f:mo>=</f:mo><f:mn>1</f:mn></f:math>, 2, 3). A <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>Z</i:mi><i:mn>2</i:mn></i:msub></i:math> symmetry is imposed under which <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>χ</k:mi></k:math> and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi mathvariant=\"normal\">Δ</m:mi></m:math> are odd, while all other particles are even. As a result, the lightest <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:msub><p:mi>Z</p:mi><p:mn>2</p:mn></p:msub></p:math> odd particle <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:mi>χ</r:mi></r:math> behaves as a candidate of DM. In the early Universe, the <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:mi>C</t:mi><t:mi>P</t:mi></t:math>-violating out-of-equilibrium decay of heavy triplet fermions to the Standard Model lepton (<v:math xmlns:v=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><v:mi>L</v:mi></v:math>) and Higgs (<x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:mi>H</x:mi></x:math>) generate a net lepton asymmetry, while that of triplet fermions to <z:math xmlns:z=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><z:mi>χ</z:mi></z:math> and <bb:math xmlns:bb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><bb:mi mathvariant=\"normal\">Δ</bb:mi></bb:math> generate a net asymmetric DM. The lepton asymmetry is converted to the required baryon asymmetry of the Universe via the electroweak sphalerons, while the asymmetry in <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>χ</eb:mi></eb:math> remains as a DM relic that we observe today. We introduce a singlet scalar <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mi mathvariant=\"normal\">Φ</gb:mi></gb:math>, with mass <jb:math xmlns:jb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><jb:msub><jb:mi>M</jb:mi><jb:mi mathvariant=\"normal\">Φ</jb:mi></jb:msub><jb:mo><</jb:mo><jb:msub><jb:mi>M</jb:mi><jb:mi>χ</jb:mi></jb:msub></jb:math>, which not only assists to deplete the symmetric component of <mb:math xmlns:mb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mb:mi>χ</mb:mi></mb:math> through the annihilation process <ob:math xmlns:ob=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ob:mover accent=\"true\"><ob:mi>χ</ob:mi><ob:mo stretchy=\"false\">¯</ob:mo></ob:mover><ob:mi>χ</ob:mi><ob:mo stretchy=\"false\">→</ob:mo><ob:mi mathvariant=\"normal\">Φ</ob:mi><ob:mi mathvariant=\"normal\">Φ</ob:mi></ob:math>, but also paves a path to detect DM <vb:math xmlns:vb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><vb:mi>χ</vb:mi></vb:math> at direct search experiments through <xb:math xmlns:xb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><xb:mi mathvariant=\"normal\">Φ</xb:mi><xb:mo>−</xb:mo><xb:mi>H</xb:mi></xb:math> mixing. The electroweak symmetry breaking induces a nonzero vacuum expectation value to Δ</ac:mi></ac:math>, which leads to an unstable asymmetric DM ranging from a few MeV to hundreds of GeV. We then explore the displaced vertex signatures of the charged components of the scalar triplet <dc:math xmlns:dc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><dc:mi mathvariant=\"normal\">Δ</dc:mi></dc:math> at colliders. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"128 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric long-lived dark matter and leptogenesis from the type-III seesaw framework\",\"authors\":\"Satyabrata Mahapatra, Partha Kumar Paul, Narendra Sahu, Prashant Shukla\",\"doi\":\"10.1103/physrevd.111.015043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a simple model in the type-III seesaw framework to explain the neutrino mass, asymmetric dark matter (DM), and baryon asymmetry of the Universe. We extend the Standard Model with a vectorlike singlet lepton (χ</a:mi></a:math>) and a hypercharge zero scalar triplet (<c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mi mathvariant=\\\"normal\\\">Δ</c:mi></c:math>) in addition to three hypercharge zero triplet fermions (<f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><f:msub><f:mi mathvariant=\\\"normal\\\">Σ</f:mi><f:mi>i</f:mi></f:msub><f:mo>,</f:mo><f:mi>i</f:mi><f:mo>=</f:mo><f:mn>1</f:mn></f:math>, 2, 3). A <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msub><i:mi>Z</i:mi><i:mn>2</i:mn></i:msub></i:math> symmetry is imposed under which <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>χ</k:mi></k:math> and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi mathvariant=\\\"normal\\\">Δ</m:mi></m:math> are odd, while all other particles are even. As a result, the lightest <p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><p:msub><p:mi>Z</p:mi><p:mn>2</p:mn></p:msub></p:math> odd particle <r:math xmlns:r=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><r:mi>χ</r:mi></r:math> behaves as a candidate of DM. In the early Universe, the <t:math xmlns:t=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><t:mi>C</t:mi><t:mi>P</t:mi></t:math>-violating out-of-equilibrium decay of heavy triplet fermions to the Standard Model lepton (<v:math xmlns:v=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><v:mi>L</v:mi></v:math>) and Higgs (<x:math xmlns:x=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><x:mi>H</x:mi></x:math>) generate a net lepton asymmetry, while that of triplet fermions to <z:math xmlns:z=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><z:mi>χ</z:mi></z:math> and <bb:math xmlns:bb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><bb:mi mathvariant=\\\"normal\\\">Δ</bb:mi></bb:math> generate a net asymmetric DM. The lepton asymmetry is converted to the required baryon asymmetry of the Universe via the electroweak sphalerons, while the asymmetry in <eb:math xmlns:eb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><eb:mi>χ</eb:mi></eb:math> remains as a DM relic that we observe today. We introduce a singlet scalar <gb:math xmlns:gb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gb:mi mathvariant=\\\"normal\\\">Φ</gb:mi></gb:math>, with mass <jb:math xmlns:jb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><jb:msub><jb:mi>M</jb:mi><jb:mi mathvariant=\\\"normal\\\">Φ</jb:mi></jb:msub><jb:mo><</jb:mo><jb:msub><jb:mi>M</jb:mi><jb:mi>χ</jb:mi></jb:msub></jb:math>, which not only assists to deplete the symmetric component of <mb:math xmlns:mb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><mb:mi>χ</mb:mi></mb:math> through the annihilation process <ob:math xmlns:ob=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ob:mover accent=\\\"true\\\"><ob:mi>χ</ob:mi><ob:mo stretchy=\\\"false\\\">¯</ob:mo></ob:mover><ob:mi>χ</ob:mi><ob:mo stretchy=\\\"false\\\">→</ob:mo><ob:mi mathvariant=\\\"normal\\\">Φ</ob:mi><ob:mi mathvariant=\\\"normal\\\">Φ</ob:mi></ob:math>, but also paves a path to detect DM <vb:math xmlns:vb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><vb:mi>χ</vb:mi></vb:math> at direct search experiments through <xb:math xmlns:xb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><xb:mi mathvariant=\\\"normal\\\">Φ</xb:mi><xb:mo>−</xb:mo><xb:mi>H</xb:mi></xb:math> mixing. The electroweak symmetry breaking induces a nonzero vacuum expectation value to Δ</ac:mi></ac:math>, which leads to an unstable asymmetric DM ranging from a few MeV to hundreds of GeV. We then explore the displaced vertex signatures of the charged components of the scalar triplet <dc:math xmlns:dc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><dc:mi mathvariant=\\\"normal\\\">Δ</dc:mi></dc:math> at colliders. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.015043\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.015043","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Asymmetric long-lived dark matter and leptogenesis from the type-III seesaw framework
We propose a simple model in the type-III seesaw framework to explain the neutrino mass, asymmetric dark matter (DM), and baryon asymmetry of the Universe. We extend the Standard Model with a vectorlike singlet lepton (χ) and a hypercharge zero scalar triplet (Δ) in addition to three hypercharge zero triplet fermions (Σi,i=1, 2, 3). A Z2 symmetry is imposed under which χ and Δ are odd, while all other particles are even. As a result, the lightest Z2 odd particle χ behaves as a candidate of DM. In the early Universe, the CP-violating out-of-equilibrium decay of heavy triplet fermions to the Standard Model lepton (L) and Higgs (H) generate a net lepton asymmetry, while that of triplet fermions to χ and Δ generate a net asymmetric DM. The lepton asymmetry is converted to the required baryon asymmetry of the Universe via the electroweak sphalerons, while the asymmetry in χ remains as a DM relic that we observe today. We introduce a singlet scalar Φ, with mass MΦ<Mχ, which not only assists to deplete the symmetric component of χ through the annihilation process χ¯χ→ΦΦ, but also paves a path to detect DM χ at direct search experiments through Φ−H mixing. The electroweak symmetry breaking induces a nonzero vacuum expectation value to Δ, which leads to an unstable asymmetric DM ranging from a few MeV to hundreds of GeV. We then explore the displaced vertex signatures of the charged components of the scalar triplet Δ at colliders. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.