带有三个电子抽离基团的 C-H 亲核物的电化学umpolung 触发烯丙基醇的 1,2-烷基芳基自由基反应

IF 4.4 2区 化学 Q2 CHEMISTRY, APPLIED
Qibin Li, Die Hu, Kun Xu, Cheng-Chu Zeng
{"title":"带有三个电子抽离基团的 C-H 亲核物的电化学umpolung 触发烯丙基醇的 1,2-烷基芳基自由基反应","authors":"Qibin Li, Die Hu, Kun Xu, Cheng-Chu Zeng","doi":"10.1002/adsc.202401522","DOIUrl":null,"url":null,"abstract":"The electrochemical catalyst‐free generation of carbon radicals bearing three electron‐withdrawing groups from the corresponding C‐H nucleophiles remains unexplored. To this end, we report a direct electro‐oxidation strategy to access these electrophilic carbon radicals under catalyst‐free conditions. Enabled by this strategy, the radical 1,2‐alkylarylations of allylic alcohols was realized, affording β‐quaternary ketones with high functional group compatibility. This protocol is operationally simple and also easy to scale up.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"24 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical umpolung of C‐H nucleophiles bearing three electron‐withdrawing groups to trigger radical 1,2‐alkylarylations of allylic alcohols\",\"authors\":\"Qibin Li, Die Hu, Kun Xu, Cheng-Chu Zeng\",\"doi\":\"10.1002/adsc.202401522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrochemical catalyst‐free generation of carbon radicals bearing three electron‐withdrawing groups from the corresponding C‐H nucleophiles remains unexplored. To this end, we report a direct electro‐oxidation strategy to access these electrophilic carbon radicals under catalyst‐free conditions. Enabled by this strategy, the radical 1,2‐alkylarylations of allylic alcohols was realized, affording β‐quaternary ketones with high functional group compatibility. This protocol is operationally simple and also easy to scale up.\",\"PeriodicalId\":118,\"journal\":{\"name\":\"Advanced Synthesis & Catalysis\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Synthesis & Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/adsc.202401522\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202401522","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrochemical umpolung of C‐H nucleophiles bearing three electron‐withdrawing groups to trigger radical 1,2‐alkylarylations of allylic alcohols
The electrochemical catalyst‐free generation of carbon radicals bearing three electron‐withdrawing groups from the corresponding C‐H nucleophiles remains unexplored. To this end, we report a direct electro‐oxidation strategy to access these electrophilic carbon radicals under catalyst‐free conditions. Enabled by this strategy, the radical 1,2‐alkylarylations of allylic alcohols was realized, affording β‐quaternary ketones with high functional group compatibility. This protocol is operationally simple and also easy to scale up.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Synthesis & Catalysis
Advanced Synthesis & Catalysis 化学-应用化学
CiteScore
9.40
自引率
7.40%
发文量
447
审稿时长
1.8 months
期刊介绍: Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry. The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信