Chenxi Li, Linjie Wang, Qi Dai, Yang Chong, Satoshi Utsunomiya, Honggui Wang, Ya Zhang, Jie Han
{"title":"手性农药菊酯通过转化促进抗生素抗性基因的传播:不同的手性异构体参与不同的调控途径","authors":"Chenxi Li, Linjie Wang, Qi Dai, Yang Chong, Satoshi Utsunomiya, Honggui Wang, Ya Zhang, Jie Han","doi":"10.1016/j.jhazmat.2025.137416","DOIUrl":null,"url":null,"abstract":"The global dissemination of antibiotic resistance genes (ARGs) poses an increasingly urgent threat to both environmental and human health. The extensive use of chiral permethrin (PM), the most popular synthetic type I pyrethroid insecticide worldwide, has led to its increased detection in aquatic environments. However, our understanding of PM's role in spreading ARGs is still limited. Here, we systematically assessed the effects of two chiral isomers of 1R-cis-PM (CPM) and 1R-trans-PM (TPM) on the dissemination of ARGs in the aquatic environments by using a natural transformation (NT) model comprising plasmid pWH1274 and <em>Acinetobacter baylyi</em> ADP1. It was found that reactive oxygen species (ROS) was the main factor facilitating the NT of ARGs mediated by CPM and TPM, although their respective production mechanisms exhibited distinct pathways: CPM generates ROS primarily through the primary electron transport chain (ETC), whereas TPM does so via a secondary ETC. Furthermore, CPM enhanced NT by improving bacterial competent state, while TPM promotes it by enhancing recombination. It was confirmed that both CPM and TPM have the potential to accelerate the spread of ARGs through distinct mechanisms. These findings will help us understand that different chiral isomers may pose risks through distinct mechanisms.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"128 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chiral pesticide permethrin promotes the antibiotic resistance genes dissemination by transformation: Different chiral isomers engage in distinct regulatory pathways\",\"authors\":\"Chenxi Li, Linjie Wang, Qi Dai, Yang Chong, Satoshi Utsunomiya, Honggui Wang, Ya Zhang, Jie Han\",\"doi\":\"10.1016/j.jhazmat.2025.137416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global dissemination of antibiotic resistance genes (ARGs) poses an increasingly urgent threat to both environmental and human health. The extensive use of chiral permethrin (PM), the most popular synthetic type I pyrethroid insecticide worldwide, has led to its increased detection in aquatic environments. However, our understanding of PM's role in spreading ARGs is still limited. Here, we systematically assessed the effects of two chiral isomers of 1R-cis-PM (CPM) and 1R-trans-PM (TPM) on the dissemination of ARGs in the aquatic environments by using a natural transformation (NT) model comprising plasmid pWH1274 and <em>Acinetobacter baylyi</em> ADP1. It was found that reactive oxygen species (ROS) was the main factor facilitating the NT of ARGs mediated by CPM and TPM, although their respective production mechanisms exhibited distinct pathways: CPM generates ROS primarily through the primary electron transport chain (ETC), whereas TPM does so via a secondary ETC. Furthermore, CPM enhanced NT by improving bacterial competent state, while TPM promotes it by enhancing recombination. It was confirmed that both CPM and TPM have the potential to accelerate the spread of ARGs through distinct mechanisms. These findings will help us understand that different chiral isomers may pose risks through distinct mechanisms.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.137416\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137416","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Chiral pesticide permethrin promotes the antibiotic resistance genes dissemination by transformation: Different chiral isomers engage in distinct regulatory pathways
The global dissemination of antibiotic resistance genes (ARGs) poses an increasingly urgent threat to both environmental and human health. The extensive use of chiral permethrin (PM), the most popular synthetic type I pyrethroid insecticide worldwide, has led to its increased detection in aquatic environments. However, our understanding of PM's role in spreading ARGs is still limited. Here, we systematically assessed the effects of two chiral isomers of 1R-cis-PM (CPM) and 1R-trans-PM (TPM) on the dissemination of ARGs in the aquatic environments by using a natural transformation (NT) model comprising plasmid pWH1274 and Acinetobacter baylyi ADP1. It was found that reactive oxygen species (ROS) was the main factor facilitating the NT of ARGs mediated by CPM and TPM, although their respective production mechanisms exhibited distinct pathways: CPM generates ROS primarily through the primary electron transport chain (ETC), whereas TPM does so via a secondary ETC. Furthermore, CPM enhanced NT by improving bacterial competent state, while TPM promotes it by enhancing recombination. It was confirmed that both CPM and TPM have the potential to accelerate the spread of ARGs through distinct mechanisms. These findings will help us understand that different chiral isomers may pose risks through distinct mechanisms.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.