{"title":"完成物种形成周期:生态位和特征预测全球鸟类的本地物种共存","authors":"Vladimír Remeš, Lenka Harmáčková","doi":"10.1111/geb.70002","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>The build-up of local species diversity requires completing the transition from allopatry to sympatry to local coexistence (syntopy). However, understanding processes than enable species arising in allopatry to become syntopic remains an unsolved challenge. Potential explanations include niche conservatism, niche divergence, and energy availability. To gauge their importance, we modelled the effects of species split age, the divergence in beta and alpha niches, specialisation, and resource availability to reveal factors driving the evolution of local species coexistence upon speciation.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Global.</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>Miocene to the present.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Passerine birds.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We collated a dataset of 206 passerine sister species pairs, each with their age of divergence; range sympatry; degree of syntopy (derived from 7,257,312 complete eBird checklists falling within the area of range overlap); beta niche divergence (habitats and environmental characteristics); alpha niche divergence (morphology, diet, and foraging stratum); species ecological specialisation (diet and foraging stratum); resource availability; and body mass. We used phylogeny-informed models to infer which of these factors best explained local species coexistence upon speciation.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>There was a major effect of niche conservatism as species with more similar beta niches (canopy height, vegetation greenness, moisture availability, and habitat affinities) exhibited higher degree of syntopy. Small species with similarly sized beaks and high specialisation on diet were also more likely to coexist locally. In contrast, the divergence or overlap in alpha niches (diet and foraging stratum) did not predict the degree of syntopy. Confirming previous studies, the degree of syntopy strongly increased with increasing range sympatry, while only weakly in older species pairs.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>The evolution of secondary syntopy is driven by niche conservatism, ecological specialisation, and body mass-related energy requirements. Consequently, the accumulation of local species richness is facilitated by both conservatism and differentiation along various ecological niche dimensions.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 2","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.70002","citationCount":"0","resultStr":"{\"title\":\"Completing the Speciation Cycle: Ecological Niches and Traits Predict Local Species Coexistence in Birds Across the Globe\",\"authors\":\"Vladimír Remeš, Lenka Harmáčková\",\"doi\":\"10.1111/geb.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>The build-up of local species diversity requires completing the transition from allopatry to sympatry to local coexistence (syntopy). However, understanding processes than enable species arising in allopatry to become syntopic remains an unsolved challenge. Potential explanations include niche conservatism, niche divergence, and energy availability. To gauge their importance, we modelled the effects of species split age, the divergence in beta and alpha niches, specialisation, and resource availability to reveal factors driving the evolution of local species coexistence upon speciation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Global.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period</h3>\\n \\n <p>Miocene to the present.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major Taxa Studied</h3>\\n \\n <p>Passerine birds.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We collated a dataset of 206 passerine sister species pairs, each with their age of divergence; range sympatry; degree of syntopy (derived from 7,257,312 complete eBird checklists falling within the area of range overlap); beta niche divergence (habitats and environmental characteristics); alpha niche divergence (morphology, diet, and foraging stratum); species ecological specialisation (diet and foraging stratum); resource availability; and body mass. We used phylogeny-informed models to infer which of these factors best explained local species coexistence upon speciation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>There was a major effect of niche conservatism as species with more similar beta niches (canopy height, vegetation greenness, moisture availability, and habitat affinities) exhibited higher degree of syntopy. Small species with similarly sized beaks and high specialisation on diet were also more likely to coexist locally. In contrast, the divergence or overlap in alpha niches (diet and foraging stratum) did not predict the degree of syntopy. Confirming previous studies, the degree of syntopy strongly increased with increasing range sympatry, while only weakly in older species pairs.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>The evolution of secondary syntopy is driven by niche conservatism, ecological specialisation, and body mass-related energy requirements. Consequently, the accumulation of local species richness is facilitated by both conservatism and differentiation along various ecological niche dimensions.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"34 2\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.70002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.70002\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.70002","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Completing the Speciation Cycle: Ecological Niches and Traits Predict Local Species Coexistence in Birds Across the Globe
Aim
The build-up of local species diversity requires completing the transition from allopatry to sympatry to local coexistence (syntopy). However, understanding processes than enable species arising in allopatry to become syntopic remains an unsolved challenge. Potential explanations include niche conservatism, niche divergence, and energy availability. To gauge their importance, we modelled the effects of species split age, the divergence in beta and alpha niches, specialisation, and resource availability to reveal factors driving the evolution of local species coexistence upon speciation.
Location
Global.
Time Period
Miocene to the present.
Major Taxa Studied
Passerine birds.
Methods
We collated a dataset of 206 passerine sister species pairs, each with their age of divergence; range sympatry; degree of syntopy (derived from 7,257,312 complete eBird checklists falling within the area of range overlap); beta niche divergence (habitats and environmental characteristics); alpha niche divergence (morphology, diet, and foraging stratum); species ecological specialisation (diet and foraging stratum); resource availability; and body mass. We used phylogeny-informed models to infer which of these factors best explained local species coexistence upon speciation.
Results
There was a major effect of niche conservatism as species with more similar beta niches (canopy height, vegetation greenness, moisture availability, and habitat affinities) exhibited higher degree of syntopy. Small species with similarly sized beaks and high specialisation on diet were also more likely to coexist locally. In contrast, the divergence or overlap in alpha niches (diet and foraging stratum) did not predict the degree of syntopy. Confirming previous studies, the degree of syntopy strongly increased with increasing range sympatry, while only weakly in older species pairs.
Main Conclusions
The evolution of secondary syntopy is driven by niche conservatism, ecological specialisation, and body mass-related energy requirements. Consequently, the accumulation of local species richness is facilitated by both conservatism and differentiation along various ecological niche dimensions.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.