大西洋经向翻转环流(AMOC)强度的机器引导推导

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Qi-Fan Wu, Markus Jochum, James E. Avery, Guido Vettoretti, Roman Nuterman
{"title":"大西洋经向翻转环流(AMOC)强度的机器引导推导","authors":"Qi-Fan Wu,&nbsp;Markus Jochum,&nbsp;James E. Avery,&nbsp;Guido Vettoretti,&nbsp;Roman Nuterman","doi":"10.1029/2024GL113454","DOIUrl":null,"url":null,"abstract":"<p>A machine learning based methodology is developed to determine the strength of the Atlantic Meridional Overturning Circulation (AMOC) in the Community Earth System Model (CESM). Neural networks capture relationships between various climate variables and AMOC. We then identify which of the various are the most important to control the AMOC, and then perform symbolic regression to transform complex interactions into a simple closed-form approximation. A sensitivity analysis for this equation reveals that surface freshwater flux and potential density at 200 m depth are the main controls of the AMOC.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 3","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113454","citationCount":"0","resultStr":"{\"title\":\"Machine Guided Derivation of the Atlantic Meridional Overturning Circulation (AMOC) Strength\",\"authors\":\"Qi-Fan Wu,&nbsp;Markus Jochum,&nbsp;James E. Avery,&nbsp;Guido Vettoretti,&nbsp;Roman Nuterman\",\"doi\":\"10.1029/2024GL113454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A machine learning based methodology is developed to determine the strength of the Atlantic Meridional Overturning Circulation (AMOC) in the Community Earth System Model (CESM). Neural networks capture relationships between various climate variables and AMOC. We then identify which of the various are the most important to control the AMOC, and then perform symbolic regression to transform complex interactions into a simple closed-form approximation. A sensitivity analysis for this equation reveals that surface freshwater flux and potential density at 200 m depth are the main controls of the AMOC.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 3\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113454\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL113454\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL113454","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在社区地球系统模型(CESM)中,开发了一种基于机器学习的方法来确定大西洋经向翻转环流(AMOC)的强度。神经网络捕捉各种气候变量与AMOC之间的关系。然后,我们确定了各种控制AMOC最重要的因素,然后执行符号回归将复杂的相互作用转换为简单的封闭形式近似。对该方程的敏感性分析表明,地表淡水通量和200 m深度的势密度是AMOC的主要控制因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Guided Derivation of the Atlantic Meridional Overturning Circulation (AMOC) Strength

Machine Guided Derivation of the Atlantic Meridional Overturning Circulation (AMOC) Strength

Machine Guided Derivation of the Atlantic Meridional Overturning Circulation (AMOC) Strength

Machine Guided Derivation of the Atlantic Meridional Overturning Circulation (AMOC) Strength

Machine Guided Derivation of the Atlantic Meridional Overturning Circulation (AMOC) Strength

A machine learning based methodology is developed to determine the strength of the Atlantic Meridional Overturning Circulation (AMOC) in the Community Earth System Model (CESM). Neural networks capture relationships between various climate variables and AMOC. We then identify which of the various are the most important to control the AMOC, and then perform symbolic regression to transform complex interactions into a simple closed-form approximation. A sensitivity analysis for this equation reveals that surface freshwater flux and potential density at 200 m depth are the main controls of the AMOC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信