基于O2-O2波段的海洋液云几何厚度被动遥感:TROPOMI的初步结果

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Wenwu Wang, Chong Shi, Jian Xu, Shuai Yin, Huazhe Shang, Yutong Wang, Chenqian Tang, Ruijie Yao, Guangyu Shi, Husi Letu
{"title":"基于O2-O2波段的海洋液云几何厚度被动遥感:TROPOMI的初步结果","authors":"Wenwu Wang,&nbsp;Chong Shi,&nbsp;Jian Xu,&nbsp;Shuai Yin,&nbsp;Huazhe Shang,&nbsp;Yutong Wang,&nbsp;Chenqian Tang,&nbsp;Ruijie Yao,&nbsp;Guangyu Shi,&nbsp;Husi Letu","doi":"10.1029/2024GL113222","DOIUrl":null,"url":null,"abstract":"<p>Observations on cloud geometric thickness are crucial for understanding the radiative balance and aerosol indirect radiative effects, and currently, cloud geometric thickness retrieval studies for passive instruments remain constrained due to the lack of the understanding of the incident radiation penetrability. In this work, we firstly analyze the relationship between the cloud droplets distribution and the incident radiation penetrability based on physical model, and then fully utilize the advantages of hyperspectral O<sub>4</sub> measurements to build a physically based machine learning model to retrieve the cloud geometric thickness. The algorithm retrieves cloud geometric thickness from TROPOMI observations for the first time, and the retrievals are compared with the cloud geometric thickness from active observations. It is found that the mean absolute error of the retrievals using 2B-CLDPROF-LIDAR cloud-top height as input is 0.49 km, which shows the potential of O<sub>4</sub> band to retrieve cloud geometric thickness.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 3","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113222","citationCount":"0","resultStr":"{\"title\":\"Passive Remote Sensing of Marine Liquid Cloud Geometric Thickness Using the O2–O2 Band: First Results From TROPOMI\",\"authors\":\"Wenwu Wang,&nbsp;Chong Shi,&nbsp;Jian Xu,&nbsp;Shuai Yin,&nbsp;Huazhe Shang,&nbsp;Yutong Wang,&nbsp;Chenqian Tang,&nbsp;Ruijie Yao,&nbsp;Guangyu Shi,&nbsp;Husi Letu\",\"doi\":\"10.1029/2024GL113222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Observations on cloud geometric thickness are crucial for understanding the radiative balance and aerosol indirect radiative effects, and currently, cloud geometric thickness retrieval studies for passive instruments remain constrained due to the lack of the understanding of the incident radiation penetrability. In this work, we firstly analyze the relationship between the cloud droplets distribution and the incident radiation penetrability based on physical model, and then fully utilize the advantages of hyperspectral O<sub>4</sub> measurements to build a physically based machine learning model to retrieve the cloud geometric thickness. The algorithm retrieves cloud geometric thickness from TROPOMI observations for the first time, and the retrievals are compared with the cloud geometric thickness from active observations. It is found that the mean absolute error of the retrievals using 2B-CLDPROF-LIDAR cloud-top height as input is 0.49 km, which shows the potential of O<sub>4</sub> band to retrieve cloud geometric thickness.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 3\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113222\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL113222\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL113222","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

云几何厚度的观测对于理解辐射平衡和气溶胶间接辐射效应至关重要,目前,由于缺乏对入射辐射穿透性的理解,被动仪器的云几何厚度反演研究仍然受到限制。本文首先基于物理模型分析云滴分布与入射辐射穿透率之间的关系,然后充分利用高光谱O4测量的优势,建立基于物理的机器学习模型来检索云的几何厚度。该算法首次从TROPOMI观测数据中提取云的几何厚度,并与活动观测数据的云几何厚度进行比较。结果表明,以2B-CLDPROF-LIDAR云顶高度为输入的反演结果平均绝对误差为0.49 km,显示了O4波段反演云几何厚度的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Passive Remote Sensing of Marine Liquid Cloud Geometric Thickness Using the O2–O2 Band: First Results From TROPOMI

Passive Remote Sensing of Marine Liquid Cloud Geometric Thickness Using the O2–O2 Band: First Results From TROPOMI

Passive Remote Sensing of Marine Liquid Cloud Geometric Thickness Using the O2–O2 Band: First Results From TROPOMI

Passive Remote Sensing of Marine Liquid Cloud Geometric Thickness Using the O2–O2 Band: First Results From TROPOMI

Passive Remote Sensing of Marine Liquid Cloud Geometric Thickness Using the O2–O2 Band: First Results From TROPOMI

Observations on cloud geometric thickness are crucial for understanding the radiative balance and aerosol indirect radiative effects, and currently, cloud geometric thickness retrieval studies for passive instruments remain constrained due to the lack of the understanding of the incident radiation penetrability. In this work, we firstly analyze the relationship between the cloud droplets distribution and the incident radiation penetrability based on physical model, and then fully utilize the advantages of hyperspectral O4 measurements to build a physically based machine learning model to retrieve the cloud geometric thickness. The algorithm retrieves cloud geometric thickness from TROPOMI observations for the first time, and the retrievals are compared with the cloud geometric thickness from active observations. It is found that the mean absolute error of the retrievals using 2B-CLDPROF-LIDAR cloud-top height as input is 0.49 km, which shows the potential of O4 band to retrieve cloud geometric thickness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信