可伸缩柔性钙钛矿太阳能电池的原位交联策略的化学钝化和晶界操纵。

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Weifu Zhang, Jian Liu, Wei Song, Jiahong Shan, Haowei Guan, Jun Zhou, Yuanyuan Meng, Xinyu Tong, Jintao Zhu, Mengjin Yang, Ziyi Ge
{"title":"可伸缩柔性钙钛矿太阳能电池的原位交联策略的化学钝化和晶界操纵。","authors":"Weifu Zhang, Jian Liu, Wei Song, Jiahong Shan, Haowei Guan, Jun Zhou, Yuanyuan Meng, Xinyu Tong, Jintao Zhu, Mengjin Yang, Ziyi Ge","doi":"10.1126/sciadv.adr2290","DOIUrl":null,"url":null,"abstract":"<p><p>Flexible perovskite solar cells (f-PSCs) are considered the most promising candidates in portable power applications. However, high sensitivity of crystallization on the substrate and the intrinsic brittleness usually trade off the performance of f-PSCs. Herein, we introduced an initiator-free cross-linkable monomer (2,5-dioxopyrrolidin-1-yl) 5-(dithiolan-3-yl)pentanoate (FTA), which can chemically passivate defects and enable real-time fine regulation of crystallization. The resulting perovskite film exhibited higher crystallinity, enlarged grain size, and reduced dependence on the substrate. In addition, the cross-linked FTA [CL(FTA)] distributed along the grain boundaries effectively released the residual stress and securely bound the grains together. Consequently, the CL(FTA)-modified flexible PSCs achieved a record-breaking efficiency of 24.64% (certified 24.08%). Moreover, the scalable potential has been verified by the corresponding rigid and flexible modules, delivering impressive efficiencies of 19.53 and 17.13%, respectively. Furthermore, the optimized device demonstrated bending durability and improved operational stability, thereby advancing the progress of f-PSCs toward industrialization.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":"eadr2290"},"PeriodicalIF":12.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784856/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chemical passivation and grain-boundary manipulation via in situ cross-linking strategy for scalable flexible perovskite solar cells.\",\"authors\":\"Weifu Zhang, Jian Liu, Wei Song, Jiahong Shan, Haowei Guan, Jun Zhou, Yuanyuan Meng, Xinyu Tong, Jintao Zhu, Mengjin Yang, Ziyi Ge\",\"doi\":\"10.1126/sciadv.adr2290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flexible perovskite solar cells (f-PSCs) are considered the most promising candidates in portable power applications. However, high sensitivity of crystallization on the substrate and the intrinsic brittleness usually trade off the performance of f-PSCs. Herein, we introduced an initiator-free cross-linkable monomer (2,5-dioxopyrrolidin-1-yl) 5-(dithiolan-3-yl)pentanoate (FTA), which can chemically passivate defects and enable real-time fine regulation of crystallization. The resulting perovskite film exhibited higher crystallinity, enlarged grain size, and reduced dependence on the substrate. In addition, the cross-linked FTA [CL(FTA)] distributed along the grain boundaries effectively released the residual stress and securely bound the grains together. Consequently, the CL(FTA)-modified flexible PSCs achieved a record-breaking efficiency of 24.64% (certified 24.08%). Moreover, the scalable potential has been verified by the corresponding rigid and flexible modules, delivering impressive efficiencies of 19.53 and 17.13%, respectively. Furthermore, the optimized device demonstrated bending durability and improved operational stability, thereby advancing the progress of f-PSCs toward industrialization.</p>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 5\",\"pages\":\"eadr2290\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784856/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/sciadv.adr2290\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr2290","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

柔性钙钛矿太阳能电池(f-PSCs)被认为是便携式电源应用中最有前途的候选者。然而,在衬底上的高结晶灵敏度和固有的脆性通常会牺牲f- psc的性能。在此,我们引入了一种无引发剂的交联单体(2,5-二氧吡啶-1-基)5-(二硫代兰-3-基)戊酸酯(FTA),它可以化学钝化缺陷并实现实时精细的结晶调节。得到的钙钛矿薄膜结晶度更高,晶粒尺寸增大,对衬底的依赖性降低。此外,沿晶界分布的交联FTA [CL(FTA)]有效地释放了残余应力,使晶粒牢固地结合在一起。因此,CL(FTA)改性柔性psc的效率达到了创纪录的24.64%(认证为24.08%)。此外,相应的刚性和柔性模块已经验证了其可扩展潜力,分别提供了19.53%和17.13%的令人印象深刻的效率。此外,优化后的器件显示出弯曲耐久性和改进的操作稳定性,从而推动了f- psc向工业化的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical passivation and grain-boundary manipulation via in situ cross-linking strategy for scalable flexible perovskite solar cells.

Flexible perovskite solar cells (f-PSCs) are considered the most promising candidates in portable power applications. However, high sensitivity of crystallization on the substrate and the intrinsic brittleness usually trade off the performance of f-PSCs. Herein, we introduced an initiator-free cross-linkable monomer (2,5-dioxopyrrolidin-1-yl) 5-(dithiolan-3-yl)pentanoate (FTA), which can chemically passivate defects and enable real-time fine regulation of crystallization. The resulting perovskite film exhibited higher crystallinity, enlarged grain size, and reduced dependence on the substrate. In addition, the cross-linked FTA [CL(FTA)] distributed along the grain boundaries effectively released the residual stress and securely bound the grains together. Consequently, the CL(FTA)-modified flexible PSCs achieved a record-breaking efficiency of 24.64% (certified 24.08%). Moreover, the scalable potential has been verified by the corresponding rigid and flexible modules, delivering impressive efficiencies of 19.53 and 17.13%, respectively. Furthermore, the optimized device demonstrated bending durability and improved operational stability, thereby advancing the progress of f-PSCs toward industrialization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信