基于光电机器学习的散射法识别纳米孔截面结构的设计。

IF 1.4 3区 物理与天体物理 Q3 OPTICS
Jun-Ichiro Sugisaka, Koichi Hirayama, Takashi Yasui
{"title":"基于光电机器学习的散射法识别纳米孔截面结构的设计。","authors":"Jun-Ichiro Sugisaka, Koichi Hirayama, Takashi Yasui","doi":"10.1364/JOSAA.541358","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a system for discriminating the verticality of nanohole sidewalls on dielectric substrates. The proposed system comprises optical filters and a compact neural network with only two input ports. The weak scattered field from the nanohole passes through the filters, and the neural network processes the intensity of the focused field. Numerical simulations demonstrate that this system achieves significantly lower error rates compared to conventional systems that use an optical microscope and a neural network. Additionally, we discuss the minimum aperture size of nanoholes that can be effectively discriminated.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 12","pages":"2395-2404"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of scatterometry with optoelectronic machine learning for discriminating nanohole cross-sectional structure.\",\"authors\":\"Jun-Ichiro Sugisaka, Koichi Hirayama, Takashi Yasui\",\"doi\":\"10.1364/JOSAA.541358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a system for discriminating the verticality of nanohole sidewalls on dielectric substrates. The proposed system comprises optical filters and a compact neural network with only two input ports. The weak scattered field from the nanohole passes through the filters, and the neural network processes the intensity of the focused field. Numerical simulations demonstrate that this system achieves significantly lower error rates compared to conventional systems that use an optical microscope and a neural network. Additionally, we discuss the minimum aperture size of nanoholes that can be effectively discriminated.</p>\",\"PeriodicalId\":17382,\"journal\":{\"name\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"volume\":\"41 12\",\"pages\":\"2395-2404\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/JOSAA.541358\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.541358","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种电介质基板上纳米孔侧壁垂直度判别系统。该系统包括光学滤波器和一个紧凑的神经网络,只有两个输入端口。来自纳米孔的弱散射场通过滤波器,神经网络对聚焦场的强度进行处理。数值模拟表明,与使用光学显微镜和神经网络的传统系统相比,该系统的错误率显着降低。此外,我们还讨论了可以有效识别的纳米孔的最小孔径尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of scatterometry with optoelectronic machine learning for discriminating nanohole cross-sectional structure.

This paper presents a system for discriminating the verticality of nanohole sidewalls on dielectric substrates. The proposed system comprises optical filters and a compact neural network with only two input ports. The weak scattered field from the nanohole passes through the filters, and the neural network processes the intensity of the focused field. Numerical simulations demonstrate that this system achieves significantly lower error rates compared to conventional systems that use an optical microscope and a neural network. Additionally, we discuss the minimum aperture size of nanoholes that can be effectively discriminated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信