几何相位的演化与测地线规则的解释。

IF 1.4 3区 物理与天体物理 Q3 OPTICS
Nathan Hagen, Luis Garza-Soto
{"title":"几何相位的演化与测地线规则的解释。","authors":"Nathan Hagen, Luis Garza-Soto","doi":"10.1364/JOSAA.538106","DOIUrl":null,"url":null,"abstract":"<p><p>We use the recently developed wave model of geometric phase to track the continuous evolution of geometric phase as a wave propagates through optical elements and throughout an optical system. By working directly with the wave properties, we encounter a natural explanation of why the conventional Poincaré sphere solid angle method must use geodesic paths rather than the physical paths of the polarization state-the \"geodesic rule\"-and show that the existing rules for the solid angle algorithm are incomplete. Finally, we use the physical model to clarify the differences between the Pancharatnam connection and the geometric phase of a wave.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 11","pages":"2014-2022"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of geometric phase and explaining the geodesic rule.\",\"authors\":\"Nathan Hagen, Luis Garza-Soto\",\"doi\":\"10.1364/JOSAA.538106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We use the recently developed wave model of geometric phase to track the continuous evolution of geometric phase as a wave propagates through optical elements and throughout an optical system. By working directly with the wave properties, we encounter a natural explanation of why the conventional Poincaré sphere solid angle method must use geodesic paths rather than the physical paths of the polarization state-the \\\"geodesic rule\\\"-and show that the existing rules for the solid angle algorithm are incomplete. Finally, we use the physical model to clarify the differences between the Pancharatnam connection and the geometric phase of a wave.</p>\",\"PeriodicalId\":17382,\"journal\":{\"name\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"volume\":\"41 11\",\"pages\":\"2014-2022\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/JOSAA.538106\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.538106","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们使用最近开发的几何相位波模型来跟踪波在光学元件和整个光学系统中传播时几何相位的连续演变。通过直接处理波的性质,我们遇到了一个自然的解释,为什么传统的庞加莱球立体角方法必须使用测地线路径而不是极化状态的物理路径——“测地线规则”——并表明现有的立体角算法规则是不完整的。最后,我们使用物理模型来澄清Pancharatnam连接与波的几何相位之间的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of geometric phase and explaining the geodesic rule.

We use the recently developed wave model of geometric phase to track the continuous evolution of geometric phase as a wave propagates through optical elements and throughout an optical system. By working directly with the wave properties, we encounter a natural explanation of why the conventional Poincaré sphere solid angle method must use geodesic paths rather than the physical paths of the polarization state-the "geodesic rule"-and show that the existing rules for the solid angle algorithm are incomplete. Finally, we use the physical model to clarify the differences between the Pancharatnam connection and the geometric phase of a wave.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信