{"title":"消色差解的颜色常数问题:亥姆霍兹-柯劳施效应的解释。","authors":"C van Trigt","doi":"10.1364/JOSAA.523797","DOIUrl":null,"url":null,"abstract":"<p><p>For given tristimulus values <i>X</i>, <i>Y</i>, <i>Z</i> of the object with reflectance <i>ρ</i>(<i>λ</i>) viewed under an illuminant <i>S</i>(<i>λ</i>) with tristimulus values <i>X</i> <sub>0</sub>, <i>Y</i> <sub>0</sub>, <i>Z</i> <sub>0</sub>, an earlier algorithm constructs the smoothest metameric estimate <i>ρ</i> <sub>0</sub>(<i>λ</i>) under <i>S</i>(<i>λ</i>) of <i>ρ</i>(<i>λ</i>), independent of the amplitude of <i>S</i>(<i>λ</i>). It satisfies a physical property of <i>ρ</i>(<i>λ</i>), i.e., 0≤<i>ρ</i> <sub>0</sub>(<i>λ</i>)≤1, on the visual range. The second inequality secures the condition that for no <i>λ</i> the corresponding patch returns more radiation from <i>S</i>(<i>λ</i>) than is incident on it at <i>λ</i>, i.e., <i>ρ</i> <sub>0</sub>(<i>λ</i>) is a fundamental metameric estimate; <i>ρ</i> <sub>0</sub>(<i>λ</i>) and <i>ρ</i>(<i>λ</i>) differ by an estimation error causing perceptual variables assigned to <i>ρ</i> <sub>0</sub>(<i>λ</i>) and <i>ρ</i>(<i>λ</i>) under <i>S</i>(<i>λ</i>) to differ under the universal reference illuminant <i>E</i>(<i>λ</i>)=1 for all <i>λ</i>, tristimulus values <i>X</i> <sub>E</sub>, <i>Y</i> <sub>E</sub>, <i>Z</i> <sub>E</sub>. This color constancy error is suppressed but not nullified by three narrowest nonnegative achromatic response functions <i>A</i> <sub>i</sub>(<i>λ</i>) defined in this paper, replacing the cone sensitivities and invariant under any nonsingular transformation <i>T</i> of the color matching functions, a demand from theoretical physics. They coincide with three functions numerically constructed by Yule apart from an error corrected here. <i>S</i>(<i>λ</i>) unknown to the visual system as a function of <i>λ</i> is replaced by its nonnegative smoothest metameric estimate <i>S</i> <sub>0</sub>(<i>λ</i>) with tristimulus values made available in color rendering calculations, by specular reflection, or determined by any educated guess; <i>ρ</i>(<i>λ</i>) under <i>S</i>(<i>λ</i>) is replaced by its corresponding color <i>R</i> <sub>0</sub>(<i>λ</i>) under <i>S</i> <sub>0</sub>(<i>λ</i>) like <i>ρ</i>(<i>λ</i>) independent of the amplitude of <i>S</i> <sub>0</sub>(<i>λ</i>). The visual system attributes to <i>R</i> <sub>0</sub>(<i>λ</i>)<i>E</i>(<i>λ</i>) one achromatic variable, in the CIE case defined by <i>y</i>(<i>λ</i>)/<i>Y</i> <sub>E</sub>, replaced by the narrowest middle wave function <i>A</i> <sub>2</sub>(<i>λ</i>) normalized such that the integral of <i>A</i> <sub>2</sub>(<i>λ</i>)<i>E</i>(<i>λ</i>) over the visual range equals unity. It defines the achromatic variable <i>ξ</i> <sub>2</sub>, <i>A</i>(<i>λ</i>), and <i>ξ</i> as described in the paper. The associated definition of present luminance explains the Helmholtz-Kohlrausch effect in the last figure of the paper and rejects CIE 1924 luminance that fails to do so. It can be understood without the mathematical details.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 11","pages":"2201-2210"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achromatic solutions of the color constancy problem: the Helmholtz-Kohlrausch effect explained.\",\"authors\":\"C van Trigt\",\"doi\":\"10.1364/JOSAA.523797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For given tristimulus values <i>X</i>, <i>Y</i>, <i>Z</i> of the object with reflectance <i>ρ</i>(<i>λ</i>) viewed under an illuminant <i>S</i>(<i>λ</i>) with tristimulus values <i>X</i> <sub>0</sub>, <i>Y</i> <sub>0</sub>, <i>Z</i> <sub>0</sub>, an earlier algorithm constructs the smoothest metameric estimate <i>ρ</i> <sub>0</sub>(<i>λ</i>) under <i>S</i>(<i>λ</i>) of <i>ρ</i>(<i>λ</i>), independent of the amplitude of <i>S</i>(<i>λ</i>). It satisfies a physical property of <i>ρ</i>(<i>λ</i>), i.e., 0≤<i>ρ</i> <sub>0</sub>(<i>λ</i>)≤1, on the visual range. The second inequality secures the condition that for no <i>λ</i> the corresponding patch returns more radiation from <i>S</i>(<i>λ</i>) than is incident on it at <i>λ</i>, i.e., <i>ρ</i> <sub>0</sub>(<i>λ</i>) is a fundamental metameric estimate; <i>ρ</i> <sub>0</sub>(<i>λ</i>) and <i>ρ</i>(<i>λ</i>) differ by an estimation error causing perceptual variables assigned to <i>ρ</i> <sub>0</sub>(<i>λ</i>) and <i>ρ</i>(<i>λ</i>) under <i>S</i>(<i>λ</i>) to differ under the universal reference illuminant <i>E</i>(<i>λ</i>)=1 for all <i>λ</i>, tristimulus values <i>X</i> <sub>E</sub>, <i>Y</i> <sub>E</sub>, <i>Z</i> <sub>E</sub>. This color constancy error is suppressed but not nullified by three narrowest nonnegative achromatic response functions <i>A</i> <sub>i</sub>(<i>λ</i>) defined in this paper, replacing the cone sensitivities and invariant under any nonsingular transformation <i>T</i> of the color matching functions, a demand from theoretical physics. They coincide with three functions numerically constructed by Yule apart from an error corrected here. <i>S</i>(<i>λ</i>) unknown to the visual system as a function of <i>λ</i> is replaced by its nonnegative smoothest metameric estimate <i>S</i> <sub>0</sub>(<i>λ</i>) with tristimulus values made available in color rendering calculations, by specular reflection, or determined by any educated guess; <i>ρ</i>(<i>λ</i>) under <i>S</i>(<i>λ</i>) is replaced by its corresponding color <i>R</i> <sub>0</sub>(<i>λ</i>) under <i>S</i> <sub>0</sub>(<i>λ</i>) like <i>ρ</i>(<i>λ</i>) independent of the amplitude of <i>S</i> <sub>0</sub>(<i>λ</i>). The visual system attributes to <i>R</i> <sub>0</sub>(<i>λ</i>)<i>E</i>(<i>λ</i>) one achromatic variable, in the CIE case defined by <i>y</i>(<i>λ</i>)/<i>Y</i> <sub>E</sub>, replaced by the narrowest middle wave function <i>A</i> <sub>2</sub>(<i>λ</i>) normalized such that the integral of <i>A</i> <sub>2</sub>(<i>λ</i>)<i>E</i>(<i>λ</i>) over the visual range equals unity. It defines the achromatic variable <i>ξ</i> <sub>2</sub>, <i>A</i>(<i>λ</i>), and <i>ξ</i> as described in the paper. The associated definition of present luminance explains the Helmholtz-Kohlrausch effect in the last figure of the paper and rejects CIE 1924 luminance that fails to do so. It can be understood without the mathematical details.</p>\",\"PeriodicalId\":17382,\"journal\":{\"name\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"volume\":\"41 11\",\"pages\":\"2201-2210\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/JOSAA.523797\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.523797","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
对于给定反射率ρ(λ)的物体在三刺激值为x0, y0, z0的光源S(λ)下的三刺激值X, Y, Z,较早的算法构建了ρ(λ)的S(λ)下最光滑的异维估计ρ 0(λ),与S(λ)的幅值无关。它满足ρ(λ)的物理性质,即在视觉范围内0≤ρ 0(λ)≤1。第二个不等式保证了在没有λ的情况下,对应的贴片从S(λ)返回的辐射大于在λ处入射到它上的辐射,即ρ 0(λ)是一个基本的超谱估计;ρ 0(λ)和ρ(λ)因估计误差而不同,导致S(λ)下分配给ρ 0(λ)和ρ(λ)的感知变量在通用参考光源E(λ)=1下对所有λ,三刺激值X E, Y E, Z E =1下不同。本文定义的三个最窄的非负消色差响应函数A i(λ)可以抑制但不能消除这种颜色常数误差,取代了颜色匹配函数在任何非奇异变换T下的锥灵敏度和不变性。理论物理的要求。它们与Yule在数值上构造的三个函数相吻合,除了这里更正了一个错误。作为λ函数的视觉系统未知的S(λ)被其非负的光滑异色估计S 0(λ)取代,其三刺激值在显色计算中可用,通过镜面反射,或由任何有根据的猜测确定;S(λ)下的ρ(λ)被它对应的颜色r0 (λ)替换为S 0(λ)下的ρ(λ)与S 0(λ)的振幅无关。视觉系统将r0 (λ)E(λ)属性为一个消色差变量,在CIE的情况下由y(λ)/ y E定义,由最窄的中波函数a2 (λ)规范化,使得a2 (λ)E(λ)在视觉范围内的积分等于1。它定义了消色差变量ξ 2, A(λ), ξ如文中所述。当前亮度的相关定义解释了论文最后一个图中的亥姆霍兹-柯劳施效应,并拒绝了未能做到这一点的CIE 1924亮度。不用数学细节也能理解。
Achromatic solutions of the color constancy problem: the Helmholtz-Kohlrausch effect explained.
For given tristimulus values X, Y, Z of the object with reflectance ρ(λ) viewed under an illuminant S(λ) with tristimulus values X0, Y0, Z0, an earlier algorithm constructs the smoothest metameric estimate ρ0(λ) under S(λ) of ρ(λ), independent of the amplitude of S(λ). It satisfies a physical property of ρ(λ), i.e., 0≤ρ0(λ)≤1, on the visual range. The second inequality secures the condition that for no λ the corresponding patch returns more radiation from S(λ) than is incident on it at λ, i.e., ρ0(λ) is a fundamental metameric estimate; ρ0(λ) and ρ(λ) differ by an estimation error causing perceptual variables assigned to ρ0(λ) and ρ(λ) under S(λ) to differ under the universal reference illuminant E(λ)=1 for all λ, tristimulus values XE, YE, ZE. This color constancy error is suppressed but not nullified by three narrowest nonnegative achromatic response functions Ai(λ) defined in this paper, replacing the cone sensitivities and invariant under any nonsingular transformation T of the color matching functions, a demand from theoretical physics. They coincide with three functions numerically constructed by Yule apart from an error corrected here. S(λ) unknown to the visual system as a function of λ is replaced by its nonnegative smoothest metameric estimate S0(λ) with tristimulus values made available in color rendering calculations, by specular reflection, or determined by any educated guess; ρ(λ) under S(λ) is replaced by its corresponding color R0(λ) under S0(λ) like ρ(λ) independent of the amplitude of S0(λ). The visual system attributes to R0(λ)E(λ) one achromatic variable, in the CIE case defined by y(λ)/YE, replaced by the narrowest middle wave function A2(λ) normalized such that the integral of A2(λ)E(λ) over the visual range equals unity. It defines the achromatic variable ξ2, A(λ), and ξ as described in the paper. The associated definition of present luminance explains the Helmholtz-Kohlrausch effect in the last figure of the paper and rejects CIE 1924 luminance that fails to do so. It can be understood without the mathematical details.
期刊介绍:
The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as:
* Atmospheric optics
* Clinical vision
* Coherence and Statistical Optics
* Color
* Diffraction and gratings
* Image processing
* Machine vision
* Physiological optics
* Polarization
* Scattering
* Signal processing
* Thin films
* Visual optics
Also: j opt soc am a.