自然与培育:使活性甲烷藻的甲酸依赖性生长。

Jichen Bao, Tejas Somvanshi, Yufang Tian, Maxime G Laird, Pierre Simon Garcia, Christian Schöne, Michael Rother, Guillaume Borrel, Silvan Scheller
{"title":"自然与培育:使活性甲烷藻的甲酸依赖性生长。","authors":"Jichen Bao, Tejas Somvanshi, Yufang Tian, Maxime G Laird, Pierre Simon Garcia, Christian Schöne, Michael Rother, Guillaume Borrel, Silvan Scheller","doi":"10.1111/febs.17409","DOIUrl":null,"url":null,"abstract":"<p><p>Methanosarcinales are versatile methanogens, capable of regulating most types of methanogenic pathways. Despite the versatile metabolic flexibility of Methanosarcinales, no member of this order has been shown to use formate for methanogenesis. In the present study, we identified a cytosolic formate dehydrogenase (FdhAB) present in several Methanosarcinales, likely acquired by independent horizontal gene transfers after an early evolutionary loss, encouraging re-evaluation of our understanding of formate utilization in Methanosarcinales. To explore whether formate-dependent (methyl-reducing or CO<sub>2</sub>-reducing) methanogenesis can occur in Methanosarcinales, we engineered two different strains of Methanosarcina acetivorans by functionally expressing FdhAB from Methanosarcina barkeri in M. acetivorans. In the first strain, fdhAB was integrated into the N<sup>5</sup>-methyl- tetrahydrosarcinapterin:coenzyme M methyltransferase (mtr) operon, making it capable of growing by reducing methanol with electrons from formate. In the second strain, fdhAB was integrated into the F<sub>420</sub>-reducing hydrogenase (frh) operon, instead of the mtr operon, enabling its growth with formate as the only source of carbon and energy after adaptive laboratory evolution. In this strain, one CO<sub>2</sub> is reduced to one methane with electrons from oxidizing four formate to four CO<sub>2</sub>, a metabolism reported only in methanogens without cytochromes. Although methanogens without cytochromes typically utilize flavin-based electron bifurcation to generate the ferredoxins needed for CO<sub>2</sub> activation, we hypothesize that, in our engineered strains, reduced ferredoxins are obtained via the Rhodobacter nitrogen fixation complex complex running in reverse. Our work demonstrates formate-dependent methyl-reducing and CO<sub>2</sub>-reducing methanogenesis in M. acetivorans that is enabled by the flexible nature of the microbe working in tandem with the nurturing provided.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nature AND nurture: enabling formate-dependent growth in Methanosarcina acetivorans.\",\"authors\":\"Jichen Bao, Tejas Somvanshi, Yufang Tian, Maxime G Laird, Pierre Simon Garcia, Christian Schöne, Michael Rother, Guillaume Borrel, Silvan Scheller\",\"doi\":\"10.1111/febs.17409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methanosarcinales are versatile methanogens, capable of regulating most types of methanogenic pathways. Despite the versatile metabolic flexibility of Methanosarcinales, no member of this order has been shown to use formate for methanogenesis. In the present study, we identified a cytosolic formate dehydrogenase (FdhAB) present in several Methanosarcinales, likely acquired by independent horizontal gene transfers after an early evolutionary loss, encouraging re-evaluation of our understanding of formate utilization in Methanosarcinales. To explore whether formate-dependent (methyl-reducing or CO<sub>2</sub>-reducing) methanogenesis can occur in Methanosarcinales, we engineered two different strains of Methanosarcina acetivorans by functionally expressing FdhAB from Methanosarcina barkeri in M. acetivorans. In the first strain, fdhAB was integrated into the N<sup>5</sup>-methyl- tetrahydrosarcinapterin:coenzyme M methyltransferase (mtr) operon, making it capable of growing by reducing methanol with electrons from formate. In the second strain, fdhAB was integrated into the F<sub>420</sub>-reducing hydrogenase (frh) operon, instead of the mtr operon, enabling its growth with formate as the only source of carbon and energy after adaptive laboratory evolution. In this strain, one CO<sub>2</sub> is reduced to one methane with electrons from oxidizing four formate to four CO<sub>2</sub>, a metabolism reported only in methanogens without cytochromes. Although methanogens without cytochromes typically utilize flavin-based electron bifurcation to generate the ferredoxins needed for CO<sub>2</sub> activation, we hypothesize that, in our engineered strains, reduced ferredoxins are obtained via the Rhodobacter nitrogen fixation complex complex running in reverse. Our work demonstrates formate-dependent methyl-reducing and CO<sub>2</sub>-reducing methanogenesis in M. acetivorans that is enabled by the flexible nature of the microbe working in tandem with the nurturing provided.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.17409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

甲烷精是一种多用途的产甲烷菌,能够调节大多数类型的产甲烷途径。尽管Methanosarcinales具有多种代谢灵活性,但该目的成员尚未被证明使用甲酸盐进行甲烷生成。在本研究中,我们发现了一种细胞内甲酸脱氢酶(FdhAB)存在于几种甲烷arcinales中,可能是在早期进化丢失后通过独立的水平基因转移获得的,这鼓励了我们对甲烷arcinales中甲酸利用的重新评估。为了探究甲酸依赖性(甲基还原或二氧化碳还原)的甲烷生成是否发生在甲烷菌中,我们通过在M. acetivorans中功能性表达来自barkeri甲烷菌的FdhAB,设计了两种不同的活性甲烷菌菌株。在第一株菌株中,fdhAB被整合到n5 -甲基-四氢sarcinapterin:辅酶M甲基转移酶(mtr)操纵子中,使其能够通过甲酸的电子还原甲醇来生长。在第二株菌株中,fdhAB被整合到f420还原氢化酶(F420-reducing hydrogenase, frh)操纵子中,而不是mtr操纵子中,使其能够在适应性实验室进化后以甲酸盐作为唯一的碳和能量来源生长。在这个菌株中,一个CO2通过电子将四个甲酸酯氧化为四个CO2,从而减少为一个甲烷,这种代谢仅在没有细胞色素的产甲烷菌中报道。虽然没有细胞色素的产甲烷菌通常利用基于黄素的电子分叉来产生二氧化碳活化所需的铁氧化还原蛋白,但我们假设,在我们的工程菌株中,还原的铁氧化还原蛋白是通过红杆菌固氮复合体反向运行获得的。我们的研究表明,活性支原体中依赖甲酸的甲基还原和二氧化碳还原甲烷生成是由微生物的灵活特性与所提供的培养协同作用实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nature AND nurture: enabling formate-dependent growth in Methanosarcina acetivorans.

Methanosarcinales are versatile methanogens, capable of regulating most types of methanogenic pathways. Despite the versatile metabolic flexibility of Methanosarcinales, no member of this order has been shown to use formate for methanogenesis. In the present study, we identified a cytosolic formate dehydrogenase (FdhAB) present in several Methanosarcinales, likely acquired by independent horizontal gene transfers after an early evolutionary loss, encouraging re-evaluation of our understanding of formate utilization in Methanosarcinales. To explore whether formate-dependent (methyl-reducing or CO2-reducing) methanogenesis can occur in Methanosarcinales, we engineered two different strains of Methanosarcina acetivorans by functionally expressing FdhAB from Methanosarcina barkeri in M. acetivorans. In the first strain, fdhAB was integrated into the N5-methyl- tetrahydrosarcinapterin:coenzyme M methyltransferase (mtr) operon, making it capable of growing by reducing methanol with electrons from formate. In the second strain, fdhAB was integrated into the F420-reducing hydrogenase (frh) operon, instead of the mtr operon, enabling its growth with formate as the only source of carbon and energy after adaptive laboratory evolution. In this strain, one CO2 is reduced to one methane with electrons from oxidizing four formate to four CO2, a metabolism reported only in methanogens without cytochromes. Although methanogens without cytochromes typically utilize flavin-based electron bifurcation to generate the ferredoxins needed for CO2 activation, we hypothesize that, in our engineered strains, reduced ferredoxins are obtained via the Rhodobacter nitrogen fixation complex complex running in reverse. Our work demonstrates formate-dependent methyl-reducing and CO2-reducing methanogenesis in M. acetivorans that is enabled by the flexible nature of the microbe working in tandem with the nurturing provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信