扩散变压器增强的fMRI功能连接增强自闭症谱系障碍诊断。

Haokai Zhao, Haowei Lou, Lina Yao, Yu Zhang
{"title":"扩散变压器增强的fMRI功能连接增强自闭症谱系障碍诊断。","authors":"Haokai Zhao, Haowei Lou, Lina Yao, Yu Zhang","doi":"10.1088/1741-2552/adb07a","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Functional magnetic resonance imaging (fMRI) is often modeled as networks of Regions of Interest and their functional connectivity to study brain functions and mental disorders. Limited fMRI data due to high acquisition costs hampers recognition model performance. We aim to address this issue using generative diffusion models for data augmentation.<i>Approach.</i>We propose Brain-Net-Diffusion, a transformer-based latent diffusion model to generate realistic functional connectivity for augmenting fMRI datasets and evaluate its impact on classification tasks.<i>Main results.</i>The Brain-Net-Diffusion effectively generates connectivity patterns resembling real data and significantly enhances classification performance. Augmentation using Brain-Net-Diffusion increased downstream autism spectrum disorder classification accuracy by 4.3% compared to no augmentation. It also outperformed other augmentation methods, with accuracy improvements ranging from 1.3% to 2.2%.<i>Significance.</i>Our approach demonstrates the effectiveness of diffusion models for fMRI data augmentation, providing a robust solution for overcoming data scarcity in functional connectivity analysis. To facilitate further research, we have made our code publicly available athttps://github.com/JoeZhao527/brain-net-diffusion.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion transformer-augmented fMRI functional connectivity for enhanced autism spectrum disorder diagnosis.\",\"authors\":\"Haokai Zhao, Haowei Lou, Lina Yao, Yu Zhang\",\"doi\":\"10.1088/1741-2552/adb07a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Functional magnetic resonance imaging (fMRI) is often modeled as networks of Regions of Interest and their functional connectivity to study brain functions and mental disorders. Limited fMRI data due to high acquisition costs hampers recognition model performance. We aim to address this issue using generative diffusion models for data augmentation.<i>Approach.</i>We propose Brain-Net-Diffusion, a transformer-based latent diffusion model to generate realistic functional connectivity for augmenting fMRI datasets and evaluate its impact on classification tasks.<i>Main results.</i>The Brain-Net-Diffusion effectively generates connectivity patterns resembling real data and significantly enhances classification performance. Augmentation using Brain-Net-Diffusion increased downstream autism spectrum disorder classification accuracy by 4.3% compared to no augmentation. It also outperformed other augmentation methods, with accuracy improvements ranging from 1.3% to 2.2%.<i>Significance.</i>Our approach demonstrates the effectiveness of diffusion models for fMRI data augmentation, providing a robust solution for overcoming data scarcity in functional connectivity analysis. To facilitate further research, we have made our code publicly available athttps://github.com/JoeZhao527/brain-net-diffusion.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/adb07a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adb07a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标。功能磁共振成像(fMRI)通常被建模为兴趣区(roi)网络及其功能连接,用于研究脑功能和精神障碍。由于获取成本高,有限的fMRI数据阻碍了识别模型的性能。我们提出了一种基于变压器的潜在扩散模型Brain-Net-Diffusion,用于生成增强fMRI数据集的真实功能连接,并评估其对分类任务的影响。主要的结果。脑-网络-扩散有效地生成了与真实数据相似的连接模式,显著提高了分类性能。使用脑网络扩散增强与不使用增强相比,下游自闭症谱系障碍(ASD)分类准确率提高了4.3%。它也优于其他增强方法,准确度提高了1.3%到2.2%。我们的方法证明了扩散模型对fMRI数据增强的有效性,为克服功能连接分析中的数据稀缺性提供了一个强大的解决方案。为了便于进一步的研究,我们在https://github.com/JoeZhao527/brain-net-diffusion上公开了我们的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diffusion transformer-augmented fMRI functional connectivity for enhanced autism spectrum disorder diagnosis.

Objective.Functional magnetic resonance imaging (fMRI) is often modeled as networks of Regions of Interest and their functional connectivity to study brain functions and mental disorders. Limited fMRI data due to high acquisition costs hampers recognition model performance. We aim to address this issue using generative diffusion models for data augmentation.Approach.We propose Brain-Net-Diffusion, a transformer-based latent diffusion model to generate realistic functional connectivity for augmenting fMRI datasets and evaluate its impact on classification tasks.Main results.The Brain-Net-Diffusion effectively generates connectivity patterns resembling real data and significantly enhances classification performance. Augmentation using Brain-Net-Diffusion increased downstream autism spectrum disorder classification accuracy by 4.3% compared to no augmentation. It also outperformed other augmentation methods, with accuracy improvements ranging from 1.3% to 2.2%.Significance.Our approach demonstrates the effectiveness of diffusion models for fMRI data augmentation, providing a robust solution for overcoming data scarcity in functional connectivity analysis. To facilitate further research, we have made our code publicly available athttps://github.com/JoeZhao527/brain-net-diffusion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信