等离子体衍生的原子氢使低温下的埃利-赖德型二氧化碳甲烷化成为可能。

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2024-11-19 eCollection Date: 2025-01-27 DOI:10.1021/jacsau.4c00857
Dae-Yeong Kim, Yoshinobu Inagaki, Tsukasa Yamakawa, Bang Lu, Yoshiaki Sato, Naoki Shirai, Shinya Furukawa, Hyun-Ha Kim, Satoru Takakusagi, Koichi Sasaki, Tomohiro Nozaki
{"title":"等离子体衍生的原子氢使低温下的埃利-赖德型二氧化碳甲烷化成为可能。","authors":"Dae-Yeong Kim, Yoshinobu Inagaki, Tsukasa Yamakawa, Bang Lu, Yoshiaki Sato, Naoki Shirai, Shinya Furukawa, Hyun-Ha Kim, Satoru Takakusagi, Koichi Sasaki, Tomohiro Nozaki","doi":"10.1021/jacsau.4c00857","DOIUrl":null,"url":null,"abstract":"<p><p>Activating H<sub>2</sub> molecules into atomic hydrogen and utilizing their intrinsic chemical reactivity are important processes in catalytic hydrogenation. Here, we have developed a plasma-catalyst combined system that directly provides atomic hydrogen from the gas phase to the catalytic reaction to utilize the high energy and translational freedom of atomic hydrogen. In this system, we show that the temperature of CO<sub>2</sub> methanation over Ni/Al<sub>2</sub>O<sub>3</sub> can be dramatically lower compared to thermal catalysis. Using a detailed mechanistic study with kinetic studies, laser plasma diagnostics, <i>in situ</i> plasma surface characterization, and theoretical calculations, we revealed that plasma-derived atomic hydrogen (PDAH) plays a crucial role in reaction promotion. In particular, PDAH effectively lowers the energy barrier of bidentate formate hydrogenation by translating from the Langmuir-Hinshelwood to the Eley-Rideal-type reaction.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 1","pages":"169-177"},"PeriodicalIF":8.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775702/pdf/","citationCount":"0","resultStr":"{\"title\":\"Plasma-Derived Atomic Hydrogen Enables Eley-Rideal-Type CO<sub>2</sub> Methanation at Low Temperatures.\",\"authors\":\"Dae-Yeong Kim, Yoshinobu Inagaki, Tsukasa Yamakawa, Bang Lu, Yoshiaki Sato, Naoki Shirai, Shinya Furukawa, Hyun-Ha Kim, Satoru Takakusagi, Koichi Sasaki, Tomohiro Nozaki\",\"doi\":\"10.1021/jacsau.4c00857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Activating H<sub>2</sub> molecules into atomic hydrogen and utilizing their intrinsic chemical reactivity are important processes in catalytic hydrogenation. Here, we have developed a plasma-catalyst combined system that directly provides atomic hydrogen from the gas phase to the catalytic reaction to utilize the high energy and translational freedom of atomic hydrogen. In this system, we show that the temperature of CO<sub>2</sub> methanation over Ni/Al<sub>2</sub>O<sub>3</sub> can be dramatically lower compared to thermal catalysis. Using a detailed mechanistic study with kinetic studies, laser plasma diagnostics, <i>in situ</i> plasma surface characterization, and theoretical calculations, we revealed that plasma-derived atomic hydrogen (PDAH) plays a crucial role in reaction promotion. In particular, PDAH effectively lowers the energy barrier of bidentate formate hydrogenation by translating from the Langmuir-Hinshelwood to the Eley-Rideal-type reaction.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"5 1\",\"pages\":\"169-177\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775702/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/jacsau.4c00857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/27 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将H2分子活化为原子氢并利用其固有的化学活性是催化加氢的重要过程。在这里,我们开发了一种等离子体-催化剂组合系统,直接将原子氢从气相提供给催化反应,利用原子氢的高能量和平移自由。在该体系中,我们发现与热催化相比,Ni/Al2O3上CO2甲烷化的温度可以显著降低。通过动力学研究、激光等离子体诊断、原位等离子体表面表征和理论计算,我们揭示了等离子体衍生的原子氢(PDAH)在反应促进中起着至关重要的作用。特别是PDAH通过将Langmuir-Hinshelwood反应转化为ley- rideal反应,有效降低了双齿甲酸氢化反应的能垒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasma-Derived Atomic Hydrogen Enables Eley-Rideal-Type CO2 Methanation at Low Temperatures.

Activating H2 molecules into atomic hydrogen and utilizing their intrinsic chemical reactivity are important processes in catalytic hydrogenation. Here, we have developed a plasma-catalyst combined system that directly provides atomic hydrogen from the gas phase to the catalytic reaction to utilize the high energy and translational freedom of atomic hydrogen. In this system, we show that the temperature of CO2 methanation over Ni/Al2O3 can be dramatically lower compared to thermal catalysis. Using a detailed mechanistic study with kinetic studies, laser plasma diagnostics, in situ plasma surface characterization, and theoretical calculations, we revealed that plasma-derived atomic hydrogen (PDAH) plays a crucial role in reaction promotion. In particular, PDAH effectively lowers the energy barrier of bidentate formate hydrogenation by translating from the Langmuir-Hinshelwood to the Eley-Rideal-type reaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信