哺乳动物耳蜗反应的微结构来源。

IF 2.4 3区 医学 Q3 NEUROSCIENCES
James B Dewey
{"title":"哺乳动物耳蜗反应的微结构来源。","authors":"James B Dewey","doi":"10.1007/s10162-025-00974-5","DOIUrl":null,"url":null,"abstract":"<p><p>Quasiperiodic fluctuations with frequency are observed in a variety of responses that either originate from or strongly depend on the cochlea's active mechanics. These spectral microstructures are unique and stable features of individual ears and have been most thoroughly studied in behavioral hearing thresholds and otoacoustic emissions (OAEs). While the exact morphology of the microstructure patterns may differ across measurement types, the patterns are interrelated and are thought to depend on common mechanisms. This review summarizes the characteristics and proposed origins of the microstructures observed in behavioral and OAE responses, as well as other mechanical and electrophysiological responses of the mammalian cochlea. Throughout, the work of Glenis Long and colleagues is highlighted. Long contributed greatly to our understanding of microstructure and its perceptual consequences, as well as to the development of techniques for reducing the impact of microstructure on OAE-based assays of cochlear function.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"1-15"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836244/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sources of Microstructure in Mammalian Cochlear Responses.\",\"authors\":\"James B Dewey\",\"doi\":\"10.1007/s10162-025-00974-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quasiperiodic fluctuations with frequency are observed in a variety of responses that either originate from or strongly depend on the cochlea's active mechanics. These spectral microstructures are unique and stable features of individual ears and have been most thoroughly studied in behavioral hearing thresholds and otoacoustic emissions (OAEs). While the exact morphology of the microstructure patterns may differ across measurement types, the patterns are interrelated and are thought to depend on common mechanisms. This review summarizes the characteristics and proposed origins of the microstructures observed in behavioral and OAE responses, as well as other mechanical and electrophysiological responses of the mammalian cochlea. Throughout, the work of Glenis Long and colleagues is highlighted. Long contributed greatly to our understanding of microstructure and its perceptual consequences, as well as to the development of techniques for reducing the impact of microstructure on OAE-based assays of cochlear function.</p>\",\"PeriodicalId\":56283,\"journal\":{\"name\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836244/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10162-025-00974-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-025-00974-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在各种反应中观察到频率的准周期波动,这些反应要么源于耳蜗的主动力学,要么强烈依赖于耳蜗的主动力学。这些光谱微观结构是个体耳朵独特而稳定的特征,在行为听力阈值和耳声发射(oae)中得到了最深入的研究。虽然微观结构模式的确切形态可能因测量类型而异,但这些模式是相互关联的,并且被认为依赖于共同的机制。本文综述了哺乳动物耳蜗行为和声发射反应以及其他机械和电生理反应中观察到的微结构的特点和可能的起源。格伦尼斯·朗及其同事的工作贯穿始终。Long对我们对微观结构及其感知后果的理解以及减少微观结构对基于oae的耳蜗功能检测的影响的技术发展做出了巨大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sources of Microstructure in Mammalian Cochlear Responses.

Quasiperiodic fluctuations with frequency are observed in a variety of responses that either originate from or strongly depend on the cochlea's active mechanics. These spectral microstructures are unique and stable features of individual ears and have been most thoroughly studied in behavioral hearing thresholds and otoacoustic emissions (OAEs). While the exact morphology of the microstructure patterns may differ across measurement types, the patterns are interrelated and are thought to depend on common mechanisms. This review summarizes the characteristics and proposed origins of the microstructures observed in behavioral and OAE responses, as well as other mechanical and electrophysiological responses of the mammalian cochlea. Throughout, the work of Glenis Long and colleagues is highlighted. Long contributed greatly to our understanding of microstructure and its perceptual consequences, as well as to the development of techniques for reducing the impact of microstructure on OAE-based assays of cochlear function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
57
审稿时长
6-12 weeks
期刊介绍: JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance. Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信