基于人工智能的脑控机械臂多目标够握控制策略。

IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Network-Computation in Neural Systems Pub Date : 2025-08-01 Epub Date: 2025-01-30 DOI:10.1080/0954898X.2025.2453620
Kerlin Sara Wilson, K K Saravanan
{"title":"基于人工智能的脑控机械臂多目标够握控制策略。","authors":"Kerlin Sara Wilson, K K Saravanan","doi":"10.1080/0954898X.2025.2453620","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-controlled robotic arm systems are designed to provide a method of communication and control for individuals with limited mobility or communication abilities. These systems can be beneficial for people who have suffered from a spinal cord injury, stroke, or neurological disease that affects their motor abilities. The ability of a person to control a robotic arm to reach and grasp multiple objects using their brain signals. This technology involves the use of an electroencephalogram (EEG) cap that captures the electrical activity in the user's brain, which is then processed by an artificial intelligent to translate it into commands that control the movements of the robotic arm. With this technology, individuals who are unable to move their limbs due to paralysis or other conditions can still perform daily activities such as feeding themselves, drinking from a glass, or grasping objects. In this paper, we propose an artificial intelligent-based control strategy for reach and grasp of multi-objects using brain-controlled robotic arm system. The proposed control strategy consists of threefold process: feature extraction, feature optimization, and control strategy classification. Initially, we design an improved ResNet pre-trained architecture for deep feature extraction from the given EEG signal.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1253-1281"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligent based control strategy for reach and grasp of multi-objects using brain-controlled robotic arm system.\",\"authors\":\"Kerlin Sara Wilson, K K Saravanan\",\"doi\":\"10.1080/0954898X.2025.2453620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain-controlled robotic arm systems are designed to provide a method of communication and control for individuals with limited mobility or communication abilities. These systems can be beneficial for people who have suffered from a spinal cord injury, stroke, or neurological disease that affects their motor abilities. The ability of a person to control a robotic arm to reach and grasp multiple objects using their brain signals. This technology involves the use of an electroencephalogram (EEG) cap that captures the electrical activity in the user's brain, which is then processed by an artificial intelligent to translate it into commands that control the movements of the robotic arm. With this technology, individuals who are unable to move their limbs due to paralysis or other conditions can still perform daily activities such as feeding themselves, drinking from a glass, or grasping objects. In this paper, we propose an artificial intelligent-based control strategy for reach and grasp of multi-objects using brain-controlled robotic arm system. The proposed control strategy consists of threefold process: feature extraction, feature optimization, and control strategy classification. Initially, we design an improved ResNet pre-trained architecture for deep feature extraction from the given EEG signal.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1253-1281\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2025.2453620\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2453620","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

脑控机械臂系统旨在为行动不便或沟通能力有限的个人提供一种沟通和控制方法。这些系统对那些患有脊髓损伤、中风或影响运动能力的神经系统疾病的人是有益的。一个人控制机械臂的能力,以达到并抓住多个物体使用他们的大脑信号。这项技术包括使用脑电图(EEG)帽来捕捉用户大脑中的电活动,然后由人工智能处理,将其转化为控制机械臂运动的命令。有了这项技术,那些由于瘫痪或其他原因无法移动四肢的人仍然可以进行日常活动,比如自己进食、用杯子喝水或抓东西。本文提出了一种基于人工智能的脑控机械臂系统多目标够握控制策略。该控制策略包括三个过程:特征提取、特征优化和控制策略分类。首先,我们设计了一种改进的ResNet预训练架构,用于从给定的脑电信号中提取深度特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligent based control strategy for reach and grasp of multi-objects using brain-controlled robotic arm system.

Brain-controlled robotic arm systems are designed to provide a method of communication and control for individuals with limited mobility or communication abilities. These systems can be beneficial for people who have suffered from a spinal cord injury, stroke, or neurological disease that affects their motor abilities. The ability of a person to control a robotic arm to reach and grasp multiple objects using their brain signals. This technology involves the use of an electroencephalogram (EEG) cap that captures the electrical activity in the user's brain, which is then processed by an artificial intelligent to translate it into commands that control the movements of the robotic arm. With this technology, individuals who are unable to move their limbs due to paralysis or other conditions can still perform daily activities such as feeding themselves, drinking from a glass, or grasping objects. In this paper, we propose an artificial intelligent-based control strategy for reach and grasp of multi-objects using brain-controlled robotic arm system. The proposed control strategy consists of threefold process: feature extraction, feature optimization, and control strategy classification. Initially, we design an improved ResNet pre-trained architecture for deep feature extraction from the given EEG signal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信