利用光子计数检测器计算机断层扫描通过虚拟单能重建减少上腔静脉的条纹伪影,以更好地显示纵隔结构。

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Greta Thater, Isabel Frerichs, Sylvia Büttner, Stefan O Schoenberg, Matthias Froelich, Isabelle Ayx
{"title":"利用光子计数检测器计算机断层扫描通过虚拟单能重建减少上腔静脉的条纹伪影,以更好地显示纵隔结构。","authors":"Greta Thater, Isabel Frerichs, Sylvia Büttner, Stefan O Schoenberg, Matthias Froelich, Isabelle Ayx","doi":"10.1097/RTI.0000000000000822","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Computed tomography (CT) is crucial in oncologic imaging for precise diagnosis and staging. Beam-hardening artifacts from contrast media in the superior vena cava can degrade image quality and obscure adjacent structures, complicating lymph node assessment. This study examines the use of virtual monoenergetic reconstruction with photon-counting detector CT (photon-counting CT) to mitigate these artifacts.</p><p><strong>Materials and methods: </strong>The retrospective study included 50 patients who underwent thoracoabdominal scans. Virtual monoenergetic reconstructions at nine keV levels (60 to 140 keV) were analyzed for Hounsfield Unit (HU) stability, image noise, and artifact index in various regions of interest (ROIs): mediastinal adipose tissue (ROI 1 to 3) and vascular stations (ROI 4 to 6) were compared with reference tissue (ROI 7 to 8). The diagnostic image quality of the keV levels was assessed using a 5-point Likert Scale.</p><p><strong>Results: </strong>Lower keV values (60 to 80) exhibited higher image noise and lower HU stability in mediastinal adipose tissue compared with higher energies, with optimal noise reduction observed at 130 keV (ROI 1 to 3). HU stability in vascular structures (ROI 4 to 6) significantly improved above 80 keV, with the best performance at 140 keV. Artifact levels decreased progressively from 60 to 140 keV. Visually, keV levels of 110 keV (96% Likert ≥4) and 120 keV (60% Likert 4) were rated most diagnostically valuable, consistent with technical findings.</p><p><strong>Conclusion: </strong>Virtual monoenergetic reconstructions with photon-counting CT effectively reduce beam-hardening artifacts near the superior vena cava, enhancing the visualization of lymph nodes and adjacent structures. This technology advances oncologic imaging by improving diagnostic accuracy in areas previously affected by artifact-related image degradation.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of Streak Artifacts in the Superior Vena Cava for Better Visualization of Mediastinal Structures Through Virtual Monoenergetic Reconstructions Using a Photon-counting Detector Computed Tomography.\",\"authors\":\"Greta Thater, Isabel Frerichs, Sylvia Büttner, Stefan O Schoenberg, Matthias Froelich, Isabelle Ayx\",\"doi\":\"10.1097/RTI.0000000000000822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Computed tomography (CT) is crucial in oncologic imaging for precise diagnosis and staging. Beam-hardening artifacts from contrast media in the superior vena cava can degrade image quality and obscure adjacent structures, complicating lymph node assessment. This study examines the use of virtual monoenergetic reconstruction with photon-counting detector CT (photon-counting CT) to mitigate these artifacts.</p><p><strong>Materials and methods: </strong>The retrospective study included 50 patients who underwent thoracoabdominal scans. Virtual monoenergetic reconstructions at nine keV levels (60 to 140 keV) were analyzed for Hounsfield Unit (HU) stability, image noise, and artifact index in various regions of interest (ROIs): mediastinal adipose tissue (ROI 1 to 3) and vascular stations (ROI 4 to 6) were compared with reference tissue (ROI 7 to 8). The diagnostic image quality of the keV levels was assessed using a 5-point Likert Scale.</p><p><strong>Results: </strong>Lower keV values (60 to 80) exhibited higher image noise and lower HU stability in mediastinal adipose tissue compared with higher energies, with optimal noise reduction observed at 130 keV (ROI 1 to 3). HU stability in vascular structures (ROI 4 to 6) significantly improved above 80 keV, with the best performance at 140 keV. Artifact levels decreased progressively from 60 to 140 keV. Visually, keV levels of 110 keV (96% Likert ≥4) and 120 keV (60% Likert 4) were rated most diagnostically valuable, consistent with technical findings.</p><p><strong>Conclusion: </strong>Virtual monoenergetic reconstructions with photon-counting CT effectively reduce beam-hardening artifacts near the superior vena cava, enhancing the visualization of lymph nodes and adjacent structures. This technology advances oncologic imaging by improving diagnostic accuracy in areas previously affected by artifact-related image degradation.</p>\",\"PeriodicalId\":49974,\"journal\":{\"name\":\"Journal of Thoracic Imaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thoracic Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RTI.0000000000000822\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RTI.0000000000000822","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:计算机断层扫描(CT)对肿瘤的精确诊断和分期至关重要。上腔静脉造影剂产生的光束硬化伪影会降低图像质量,模糊邻近结构,使淋巴结评估复杂化。本研究探讨了使用光子计数检测器CT(光子计数CT)的虚拟单能重建来减轻这些伪影。材料和方法:回顾性研究包括50例接受胸腹扫描的患者。分析了9个keV水平(60至140 keV)下的虚拟单能重建对不同兴趣区域(ROI)的Hounsfield Unit (HU)稳定性、图像噪声和伪像指数的影响:将纵隔脂肪组织(ROI 1至3)和血管站(ROI 4至6)与参考组织(ROI 7至8)进行比较。使用5点李克特量表评估keV水平的诊断图像质量。结果:较低的keV值(60 ~ 80)与较高的能量相比,表现出更高的图像噪声和纵隔脂肪组织较低的HU稳定性,在130 keV (ROI 1 ~ 3)时观察到最佳的降噪效果。血管结构(ROI 4 ~ 6)的HU稳定性在80 keV以上显著改善,在140 keV时表现最佳。神器等级从60降低到140 keV。视觉上,110 keV(96%的李克特≥4)和120 keV(60%的李克特≥4)被评为最有诊断价值,与技术结果一致。结论:光子计数CT虚拟单能重建有效减少上腔静脉附近的束硬化伪影,增强淋巴结和邻近结构的可视化。该技术通过提高先前受伪影相关图像退化影响的区域的诊断准确性来推进肿瘤成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction of Streak Artifacts in the Superior Vena Cava for Better Visualization of Mediastinal Structures Through Virtual Monoenergetic Reconstructions Using a Photon-counting Detector Computed Tomography.

Purpose: Computed tomography (CT) is crucial in oncologic imaging for precise diagnosis and staging. Beam-hardening artifacts from contrast media in the superior vena cava can degrade image quality and obscure adjacent structures, complicating lymph node assessment. This study examines the use of virtual monoenergetic reconstruction with photon-counting detector CT (photon-counting CT) to mitigate these artifacts.

Materials and methods: The retrospective study included 50 patients who underwent thoracoabdominal scans. Virtual monoenergetic reconstructions at nine keV levels (60 to 140 keV) were analyzed for Hounsfield Unit (HU) stability, image noise, and artifact index in various regions of interest (ROIs): mediastinal adipose tissue (ROI 1 to 3) and vascular stations (ROI 4 to 6) were compared with reference tissue (ROI 7 to 8). The diagnostic image quality of the keV levels was assessed using a 5-point Likert Scale.

Results: Lower keV values (60 to 80) exhibited higher image noise and lower HU stability in mediastinal adipose tissue compared with higher energies, with optimal noise reduction observed at 130 keV (ROI 1 to 3). HU stability in vascular structures (ROI 4 to 6) significantly improved above 80 keV, with the best performance at 140 keV. Artifact levels decreased progressively from 60 to 140 keV. Visually, keV levels of 110 keV (96% Likert ≥4) and 120 keV (60% Likert 4) were rated most diagnostically valuable, consistent with technical findings.

Conclusion: Virtual monoenergetic reconstructions with photon-counting CT effectively reduce beam-hardening artifacts near the superior vena cava, enhancing the visualization of lymph nodes and adjacent structures. This technology advances oncologic imaging by improving diagnostic accuracy in areas previously affected by artifact-related image degradation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thoracic Imaging
Journal of Thoracic Imaging 医学-核医学
CiteScore
7.10
自引率
9.10%
发文量
87
审稿时长
6-12 weeks
期刊介绍: Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology. Official Journal of the Society of Thoracic Radiology: Japanese Society of Thoracic Radiology Korean Society of Thoracic Radiology European Society of Thoracic Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信