基于声学菲涅耳透镜与外科机器人集成的微型FUS换能器。

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS
Jack Stevenson, Margaret Lucas
{"title":"基于声学菲涅耳透镜与外科机器人集成的微型FUS换能器。","authors":"Jack Stevenson,&nbsp;Margaret Lucas","doi":"10.1016/j.ultras.2025.107587","DOIUrl":null,"url":null,"abstract":"<div><div>A new focussed ultrasound surgery (FUS) transducer for soft tissue ablation is proposed, with a miniaturised configuration that can be readily integrated with a surgical robot. The transducer fills a gap in FUS technology at this size, with capability for acoustic focus steering within a very simple transducer configuration. Miniaturisation is enabled by the incorporation of an acoustic Fresnel lens as the focussing element driven by a single piezoceramic disc. The transducer housing and Fresnel lens are made from photopolymer resins in a mask stereolithography (mSLA) printer and a microballoon filled epoxy backing layer is added to approximate an air backing. In this study, four versions of the miniature FUS transducer were fabricated and tested, each incorporating a different piezoceramic material: a soft PZT, a specialised composition for high intensity focused ultrasound, a low acoustic impedance porous PZT, and a lead free piezoceramic. It is shown that the FUS transducer containing the porous piezoceramic disc, which has lower piezoelectric and coupling coefficients than the other materials, achieves the highest focal zone intensity. Through finite element analysis (FEA) and experimental characterisations of the acoustic field, the FUS transducer is demonstrated to be capable of both creating and steering a focal intensity suitable for tissue ablation.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"149 ","pages":"Article 107587"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A miniature FUS transducer based on an acoustic Fresnel lens for integration with a surgical robot\",\"authors\":\"Jack Stevenson,&nbsp;Margaret Lucas\",\"doi\":\"10.1016/j.ultras.2025.107587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A new focussed ultrasound surgery (FUS) transducer for soft tissue ablation is proposed, with a miniaturised configuration that can be readily integrated with a surgical robot. The transducer fills a gap in FUS technology at this size, with capability for acoustic focus steering within a very simple transducer configuration. Miniaturisation is enabled by the incorporation of an acoustic Fresnel lens as the focussing element driven by a single piezoceramic disc. The transducer housing and Fresnel lens are made from photopolymer resins in a mask stereolithography (mSLA) printer and a microballoon filled epoxy backing layer is added to approximate an air backing. In this study, four versions of the miniature FUS transducer were fabricated and tested, each incorporating a different piezoceramic material: a soft PZT, a specialised composition for high intensity focused ultrasound, a low acoustic impedance porous PZT, and a lead free piezoceramic. It is shown that the FUS transducer containing the porous piezoceramic disc, which has lower piezoelectric and coupling coefficients than the other materials, achieves the highest focal zone intensity. Through finite element analysis (FEA) and experimental characterisations of the acoustic field, the FUS transducer is demonstrated to be capable of both creating and steering a focal intensity suitable for tissue ablation.</div></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"149 \",\"pages\":\"Article 107587\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X25000241\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X25000241","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于软组织消融的新型聚焦超声手术(FUS)换能器,其小型化配置可以很容易地与手术机器人集成。该换能器填补了这种尺寸的FUS技术的空白,在一个非常简单的换能器配置中具有声焦点转向的能力。小型化是由一个声学菲涅耳透镜作为聚焦元件,由一个单一的压电陶瓷圆盘驱动。换能器外壳和菲涅耳透镜由掩模立体光刻(mSLA)打印机中的光聚合物树脂制成,并添加了微气球填充的环氧树脂衬底层以近似空气衬底。在这项研究中,制造和测试了四种版本的微型FUS换能器,每种都包含不同的压电陶瓷材料:软PZT,用于高强度聚焦超声的专门成分,低声阻抗多孔PZT和无铅压电陶瓷。结果表明,含多孔压电陶瓷片的FUS换能器具有较低的压电系数和耦合系数,可获得最高的焦区强度。通过有限元分析(FEA)和声场的实验特性,FUS换能器被证明能够产生和控制适合组织消融的焦强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A miniature FUS transducer based on an acoustic Fresnel lens for integration with a surgical robot
A new focussed ultrasound surgery (FUS) transducer for soft tissue ablation is proposed, with a miniaturised configuration that can be readily integrated with a surgical robot. The transducer fills a gap in FUS technology at this size, with capability for acoustic focus steering within a very simple transducer configuration. Miniaturisation is enabled by the incorporation of an acoustic Fresnel lens as the focussing element driven by a single piezoceramic disc. The transducer housing and Fresnel lens are made from photopolymer resins in a mask stereolithography (mSLA) printer and a microballoon filled epoxy backing layer is added to approximate an air backing. In this study, four versions of the miniature FUS transducer were fabricated and tested, each incorporating a different piezoceramic material: a soft PZT, a specialised composition for high intensity focused ultrasound, a low acoustic impedance porous PZT, and a lead free piezoceramic. It is shown that the FUS transducer containing the porous piezoceramic disc, which has lower piezoelectric and coupling coefficients than the other materials, achieves the highest focal zone intensity. Through finite element analysis (FEA) and experimental characterisations of the acoustic field, the FUS transducer is demonstrated to be capable of both creating and steering a focal intensity suitable for tissue ablation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信