Rui Cao, Yurong Liu, Kaixin Wei, Ning Jin, Yuxiang Liang, Ruifang Ao, Weiwei Pan, Xiang Wang, Xiuwei Wang, Li Zhang, Jun Xie
{"title":"神经管缺损和胶质母细胞瘤相关基因。","authors":"Rui Cao, Yurong Liu, Kaixin Wei, Ning Jin, Yuxiang Liang, Ruifang Ao, Weiwei Pan, Xiang Wang, Xiuwei Wang, Li Zhang, Jun Xie","doi":"10.1038/s41598-025-86891-2","DOIUrl":null,"url":null,"abstract":"<p><p>There are many similarities between early embryonic development and tumorigenesis. The occurrence of neural tube defects (NTDs) and glioblastoma (GBM) are both related to the abnormal development of neuroectodermal cells. To obtain genes related to both NTDs and GBM, as well as small molecule drugs with potential clinical application value. We performed bioinformatics analysis on transcriptome sequencing data of retinoic acid (RA)-induced NTDs mice, human NTDs samples and GBM samples. RT-qPCR, Western blot, and immunohistochemistry were used to validate the expression of candidate genes. Our results indicated that two genes at mRNA and protein levels have been well verified in both NTDs mouse and GBM human samples, namely, Poli and Fgf1. Molecular docking and validating in vitro were performed for FGF1 against pazopanib by using Autodock and Biacore. Cytological experiments showed that pazopanib significantly inhibited the proliferation of GBM tumor cells and mouse neural cells, promoted apoptosis, and had no effect on GBM tumor cells migration. Overall, our results demonstrated that Fgf1 abnormally expressed at different developmental stages, it may be a potentially prenatal biomarker for NTDs and potential therapeutic target for GBM. Pazopanib may be a new drug for the treatment of GBM tumors.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3777"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782569/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genes related to neural tube defects and glioblastoma.\",\"authors\":\"Rui Cao, Yurong Liu, Kaixin Wei, Ning Jin, Yuxiang Liang, Ruifang Ao, Weiwei Pan, Xiang Wang, Xiuwei Wang, Li Zhang, Jun Xie\",\"doi\":\"10.1038/s41598-025-86891-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There are many similarities between early embryonic development and tumorigenesis. The occurrence of neural tube defects (NTDs) and glioblastoma (GBM) are both related to the abnormal development of neuroectodermal cells. To obtain genes related to both NTDs and GBM, as well as small molecule drugs with potential clinical application value. We performed bioinformatics analysis on transcriptome sequencing data of retinoic acid (RA)-induced NTDs mice, human NTDs samples and GBM samples. RT-qPCR, Western blot, and immunohistochemistry were used to validate the expression of candidate genes. Our results indicated that two genes at mRNA and protein levels have been well verified in both NTDs mouse and GBM human samples, namely, Poli and Fgf1. Molecular docking and validating in vitro were performed for FGF1 against pazopanib by using Autodock and Biacore. Cytological experiments showed that pazopanib significantly inhibited the proliferation of GBM tumor cells and mouse neural cells, promoted apoptosis, and had no effect on GBM tumor cells migration. Overall, our results demonstrated that Fgf1 abnormally expressed at different developmental stages, it may be a potentially prenatal biomarker for NTDs and potential therapeutic target for GBM. Pazopanib may be a new drug for the treatment of GBM tumors.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"3777\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782569/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-86891-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-86891-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Genes related to neural tube defects and glioblastoma.
There are many similarities between early embryonic development and tumorigenesis. The occurrence of neural tube defects (NTDs) and glioblastoma (GBM) are both related to the abnormal development of neuroectodermal cells. To obtain genes related to both NTDs and GBM, as well as small molecule drugs with potential clinical application value. We performed bioinformatics analysis on transcriptome sequencing data of retinoic acid (RA)-induced NTDs mice, human NTDs samples and GBM samples. RT-qPCR, Western blot, and immunohistochemistry were used to validate the expression of candidate genes. Our results indicated that two genes at mRNA and protein levels have been well verified in both NTDs mouse and GBM human samples, namely, Poli and Fgf1. Molecular docking and validating in vitro were performed for FGF1 against pazopanib by using Autodock and Biacore. Cytological experiments showed that pazopanib significantly inhibited the proliferation of GBM tumor cells and mouse neural cells, promoted apoptosis, and had no effect on GBM tumor cells migration. Overall, our results demonstrated that Fgf1 abnormally expressed at different developmental stages, it may be a potentially prenatal biomarker for NTDs and potential therapeutic target for GBM. Pazopanib may be a new drug for the treatment of GBM tumors.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.