Hermany Munguba, Ipsit Srivastava, Vanessa A Gutzeit, Ashna Singh, Akshara Vijay, Melanie Kristt, Anisul Arefin, Sonal Thukral, Johannes Broichhagen, Joseph M Stujenske, Conor Liston, Joshua Levitz
{"title":"投射靶向光药理学揭示了突触前mGluR2在前额叶和杏仁核岛突触中的独特抗焦虑作用。","authors":"Hermany Munguba, Ipsit Srivastava, Vanessa A Gutzeit, Ashna Singh, Akshara Vijay, Melanie Kristt, Anisul Arefin, Sonal Thukral, Johannes Broichhagen, Joseph M Stujenske, Conor Liston, Joshua Levitz","doi":"10.1016/j.neuron.2025.01.002","DOIUrl":null,"url":null,"abstract":"<p><p>Dissecting how membrane receptors regulate neural circuits is critical for deciphering principles of neuromodulation and mechanisms of drug action. Here, we use a battery of optical approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) in the basolateral amygdala (BLA) controls anxiety-related behavior in mice. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of ventromedial prefrontal cortex (vmPFC)-BLA, but not posterior insular cortex (pIC)-BLA, connections produces a long-lasting decrease in spatial avoidance. In contrast, presynaptic inhibition of pIC-BLA connections decreases social avoidance and novelty-induced hypophagia without impairing working memory, establishing this projection as a novel target for the treatment of anxiety disorders. Fiber photometry and viral mapping reveal distinct activity patterns and anatomical organization of vmPFC-BLA and pIC-BLA circuits. Together, this work reveals new aspects of BLA neuromodulation with therapeutic implications while establishing a powerful approach for optical mapping of drug action.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"912-930.e6"},"PeriodicalIF":14.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925682/pdf/","citationCount":"0","resultStr":"{\"title\":\"Projection-targeted photopharmacology reveals distinct anxiolytic roles for presynaptic mGluR2 in prefrontal- and insula-amygdala synapses.\",\"authors\":\"Hermany Munguba, Ipsit Srivastava, Vanessa A Gutzeit, Ashna Singh, Akshara Vijay, Melanie Kristt, Anisul Arefin, Sonal Thukral, Johannes Broichhagen, Joseph M Stujenske, Conor Liston, Joshua Levitz\",\"doi\":\"10.1016/j.neuron.2025.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dissecting how membrane receptors regulate neural circuits is critical for deciphering principles of neuromodulation and mechanisms of drug action. Here, we use a battery of optical approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) in the basolateral amygdala (BLA) controls anxiety-related behavior in mice. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of ventromedial prefrontal cortex (vmPFC)-BLA, but not posterior insular cortex (pIC)-BLA, connections produces a long-lasting decrease in spatial avoidance. In contrast, presynaptic inhibition of pIC-BLA connections decreases social avoidance and novelty-induced hypophagia without impairing working memory, establishing this projection as a novel target for the treatment of anxiety disorders. Fiber photometry and viral mapping reveal distinct activity patterns and anatomical organization of vmPFC-BLA and pIC-BLA circuits. Together, this work reveals new aspects of BLA neuromodulation with therapeutic implications while establishing a powerful approach for optical mapping of drug action.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"912-930.e6\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925682/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2025.01.002\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.01.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Projection-targeted photopharmacology reveals distinct anxiolytic roles for presynaptic mGluR2 in prefrontal- and insula-amygdala synapses.
Dissecting how membrane receptors regulate neural circuits is critical for deciphering principles of neuromodulation and mechanisms of drug action. Here, we use a battery of optical approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) in the basolateral amygdala (BLA) controls anxiety-related behavior in mice. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of ventromedial prefrontal cortex (vmPFC)-BLA, but not posterior insular cortex (pIC)-BLA, connections produces a long-lasting decrease in spatial avoidance. In contrast, presynaptic inhibition of pIC-BLA connections decreases social avoidance and novelty-induced hypophagia without impairing working memory, establishing this projection as a novel target for the treatment of anxiety disorders. Fiber photometry and viral mapping reveal distinct activity patterns and anatomical organization of vmPFC-BLA and pIC-BLA circuits. Together, this work reveals new aspects of BLA neuromodulation with therapeutic implications while establishing a powerful approach for optical mapping of drug action.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.