Conan Chen, Ryan A. Barnes, Katherine J. Bangen, Fei Han, Josef Pfeuffer, Eric C. Wong, Thomas T. Liu, Divya S. Bolar
{"title":"MVP-VSASL: measuring MicroVascular Pulsatility using velocity-selective arterial spin labeling","authors":"Conan Chen, Ryan A. Barnes, Katherine J. Bangen, Fei Han, Josef Pfeuffer, Eric C. Wong, Thomas T. Liu, Divya S. Bolar","doi":"10.1002/mrm.30370","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Purpose</h3>\n \n <p>By leveraging the small-vessel specificity of velocity-selective arterial spin labeling (VSASL), we present a novel technique for measuring cerebral MicroVascular Pulsatility named MVP-VSASL.</p>\n </section>\n \n <section>\n \n <h3> Theory and Methods</h3>\n \n <p>We present a theoretical model relating the pulsatile, cerebral blood flow-driven VSASL signal to the microvascular pulsatility index (<span></span><math>\n <semantics>\n <mrow>\n <mi>PI</mi>\n </mrow>\n <annotation>$$ \\mathrm{PI} $$</annotation>\n </semantics></math>), a widely used metric for quantifying cardiac-dependent fluctuations. The model describes the dependence of the <span></span><math>\n <semantics>\n <mrow>\n <mi>PI</mi>\n </mrow>\n <annotation>$$ \\mathrm{PI} $$</annotation>\n </semantics></math> of VSASL signal (denoted <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>PI</mi>\n <mi>VS</mi>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{PI}}_{\\mathrm{VS}} $$</annotation>\n </semantics></math>) on bolus duration <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <annotation>$$ \\tau $$</annotation>\n </semantics></math> (an adjustable VSASL sequence parameter) and provides guidance for selecting a value of <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <annotation>$$ \\tau $$</annotation>\n </semantics></math> that maximizes the SNR of the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>PI</mi>\n <mi>VS</mi>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{PI}}_{\\mathrm{VS}} $$</annotation>\n </semantics></math> measurement. The model predictions were assessed in humans using data acquired with retrospectively cardiac-gated VSASL sequences over a broad range of <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <annotation>$$ \\tau $$</annotation>\n </semantics></math> values. In vivo measurements were also used to demonstrate the feasibility of whole-brain voxel-wise pulsatility mapping, assess intrasession repeatability of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>PI</mi>\n <mi>VS</mi>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{PI}}_{\\mathrm{VS}} $$</annotation>\n </semantics></math>, and illustrate the potential of this method to explore an association with age.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The theoretical model showed excellent agreement to the empirical data in a gray matter region of interest (average <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{R}}^2 $$</annotation>\n </semantics></math> value of 0.898 <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation>$$ \\pm $$</annotation>\n </semantics></math> 0.107 across six subjects). We further showed excellent intrasession repeatability of the pulsatility measurement (<span></span><math>\n <semantics>\n <mrow>\n <mi>ICC</mi>\n <mo>=</mo>\n <mn>0.960</mn>\n </mrow>\n <annotation>$$ \\mathrm{ICC}=0.960 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo><</mo>\n <mn>0.001</mn>\n </mrow>\n <annotation>$$ p<0.001 $$</annotation>\n </semantics></math>) and the potential to characterize associations with age (<span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>=</mo>\n <mn>0.554</mn>\n </mrow>\n <annotation>$$ r=0.554 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mn>0.021</mn>\n </mrow>\n <annotation>$$ p=0.021 $$</annotation>\n </semantics></math>).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>We have introduced a novel, VSASL-based cerebral microvascular pulsatility technique, which may facilitate investigation of cognitive disorders where damage to the microvasculature has been implicated.</p>\n </section>\n </div>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":"93 4","pages":"1516-1534"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782735/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrm.30370","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
目的:通过利用速度选择性动脉自旋标记(VSASL)的小血管特异性,我们提出了一种测量脑微血管搏动性的新技术--MVP-VSASL:我们提出了一个理论模型,该模型将搏动性、脑血流驱动的 VSASL 信号与微血管搏动指数(PI $$ \mathrm{PI} $$)相关联,微血管搏动指数是一种广泛使用的量化心脏依赖性波动的指标。该模型描述了 VSASL 信号的 PI $\mathrm{PI} $$ (表示为 PI VS $$ {\mathrm{PI}}_{\mathrm{VS}} $$)对栓剂持续时间 τ $ $ \tau $$(可调节的 VSASL 序列参数)的依赖性,并为选择能使 PI VS $$ {\mathrm{PI}}_{\mathrm{VS}} SNR 最大化的 τ $ $ \tau $$值提供指导。$$ 测量值。利用回溯性心脏门控 VSASL 序列获取的数据,在广泛的 τ $$ \tau $$ 值范围内对人体模型预测进行了评估。体内测量还被用来证明全脑体素搏动性映射的可行性,评估 PI VS $$ {\mathrm{PI}}_{\mathrm{VS}} 的会期内可重复性。$$ ,并说明该方法在探索与年龄相关性方面的潜力:理论模型与灰质相关区域的经验数据非常吻合(六个受试者的平均 R 2 $$ {\mathrm{R}}^2 $$ 值为 0.898 ± $ $ \pm $ $ 0.107)。我们还进一步证明了脉动性测量的极佳会期内重复性(ICC = 0.960 $$ \mathrm{ICC}=0.960 $$ , p 0.001 $$ p)以及与年龄相关的潜在特征(r = 0.554 $$ r=0.554 $$ , p = 0.021 $$ p=0.021 $$):我们介绍了一种新颖的、基于 VSASL 的脑微血管搏动性技术,该技术可能有助于研究微血管损伤引起的认知障碍。
MVP-VSASL: measuring MicroVascular Pulsatility using velocity-selective arterial spin labeling
Purpose
By leveraging the small-vessel specificity of velocity-selective arterial spin labeling (VSASL), we present a novel technique for measuring cerebral MicroVascular Pulsatility named MVP-VSASL.
Theory and Methods
We present a theoretical model relating the pulsatile, cerebral blood flow-driven VSASL signal to the microvascular pulsatility index (), a widely used metric for quantifying cardiac-dependent fluctuations. The model describes the dependence of the of VSASL signal (denoted ) on bolus duration (an adjustable VSASL sequence parameter) and provides guidance for selecting a value of that maximizes the SNR of the measurement. The model predictions were assessed in humans using data acquired with retrospectively cardiac-gated VSASL sequences over a broad range of values. In vivo measurements were also used to demonstrate the feasibility of whole-brain voxel-wise pulsatility mapping, assess intrasession repeatability of , and illustrate the potential of this method to explore an association with age.
Results
The theoretical model showed excellent agreement to the empirical data in a gray matter region of interest (average value of 0.898 0.107 across six subjects). We further showed excellent intrasession repeatability of the pulsatility measurement (, ) and the potential to characterize associations with age (, ).
Conclusion
We have introduced a novel, VSASL-based cerebral microvascular pulsatility technique, which may facilitate investigation of cognitive disorders where damage to the microvasculature has been implicated.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.