开采沉陷引起的土壤细菌群落对生态过程的适应性发展

IF 3.5 4区 生物学 Q2 MICROBIOLOGY
Yan Yu, Yuanjia Li, Jiangning Zhou, Jie Zhang, Wen Li
{"title":"开采沉陷引起的土壤细菌群落对生态过程的适应性发展","authors":"Yan Yu, Yuanjia Li, Jiangning Zhou, Jie Zhang, Wen Li","doi":"10.1002/jobm.70002","DOIUrl":null,"url":null,"abstract":"<p><p>Subsidence from coal mining is a major environmental issue, causing significant damage to soil structure. Soil microorganisms, highly sensitive to environmental changes, adapt accordingly. This study focused on four areas of the Burdai coal mine: a non-subsidence area (CK), half-yearly (HY), 1-year (OY), and 2-year (TY) subsidence areas. Using high-throughput sequencing and molecular ecological network analysis, we examined soil microbial community diversity and structure across these zones, exploring microbial community assembly and functional predictions. Results showed that compared to the control, subsidence areas experienced reduced soil water content, organic matter, available phosphorus, and alkaline nitrogen, with the lowest levels observed at 1 year. These values began to rise after 1 year, suggesting natural recovery after subsidence stabilized. Microbial communities were closely related to soil organic matter, water content, and alkaline nitrogen. At the 1-year mark, soil property changes significantly reduced microbial diversity, which then began to recover after 2 years. The microbial network during 1-year subsidence was simpler, with 102 nodes, 179 edges, and an average degree of 3.51, indicating that early subsidence was unstable, and the microbial community was still adapting. By 1 year, community structure and interactions had begun to stabilize. Stochastic processes played a key role in microbial variability during short-term subsidence.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e70002"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Development of Soil Bacterial Communities to Ecological Processes Caused by Mining Subsidence.\",\"authors\":\"Yan Yu, Yuanjia Li, Jiangning Zhou, Jie Zhang, Wen Li\",\"doi\":\"10.1002/jobm.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Subsidence from coal mining is a major environmental issue, causing significant damage to soil structure. Soil microorganisms, highly sensitive to environmental changes, adapt accordingly. This study focused on four areas of the Burdai coal mine: a non-subsidence area (CK), half-yearly (HY), 1-year (OY), and 2-year (TY) subsidence areas. Using high-throughput sequencing and molecular ecological network analysis, we examined soil microbial community diversity and structure across these zones, exploring microbial community assembly and functional predictions. Results showed that compared to the control, subsidence areas experienced reduced soil water content, organic matter, available phosphorus, and alkaline nitrogen, with the lowest levels observed at 1 year. These values began to rise after 1 year, suggesting natural recovery after subsidence stabilized. Microbial communities were closely related to soil organic matter, water content, and alkaline nitrogen. At the 1-year mark, soil property changes significantly reduced microbial diversity, which then began to recover after 2 years. The microbial network during 1-year subsidence was simpler, with 102 nodes, 179 edges, and an average degree of 3.51, indicating that early subsidence was unstable, and the microbial community was still adapting. By 1 year, community structure and interactions had begun to stabilize. Stochastic processes played a key role in microbial variability during short-term subsidence.</p>\",\"PeriodicalId\":15101,\"journal\":{\"name\":\"Journal of Basic Microbiology\",\"volume\":\" \",\"pages\":\"e70002\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Basic Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jobm.70002\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.70002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

煤矿开采沉陷是一个重大的环境问题,对土壤结构造成重大破坏。土壤微生物对环境变化高度敏感,并能相应适应。本研究以布代煤矿的4个塌陷区为研究对象:非塌陷区(CK)、半年塌陷区(HY)、1年塌陷区(OY)和2年塌陷区(TY)。利用高通量测序和分子生态网络分析,研究了这些地区土壤微生物群落的多样性和结构,探讨了微生物群落的组成和功能预测。结果表明:与对照区相比,塌陷区土壤含水量、有机质、速效磷和碱性氮均减少,且在1年时达到最低水平;这些值在1年后开始上升,表明沉降稳定后自然恢复。微生物群落与土壤有机质、含水量和碱性氮密切相关。1年时,土壤性质变化显著降低微生物多样性,2年后开始恢复。1年沉降期微生物网络较为简单,有102个节点、179条边,平均度为3.51,表明早期沉降不稳定,微生物群落仍处于适应阶段。1年后,群落结构和相互作用开始趋于稳定。在短期沉降过程中,随机过程对微生物变异起关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Development of Soil Bacterial Communities to Ecological Processes Caused by Mining Subsidence.

Subsidence from coal mining is a major environmental issue, causing significant damage to soil structure. Soil microorganisms, highly sensitive to environmental changes, adapt accordingly. This study focused on four areas of the Burdai coal mine: a non-subsidence area (CK), half-yearly (HY), 1-year (OY), and 2-year (TY) subsidence areas. Using high-throughput sequencing and molecular ecological network analysis, we examined soil microbial community diversity and structure across these zones, exploring microbial community assembly and functional predictions. Results showed that compared to the control, subsidence areas experienced reduced soil water content, organic matter, available phosphorus, and alkaline nitrogen, with the lowest levels observed at 1 year. These values began to rise after 1 year, suggesting natural recovery after subsidence stabilized. Microbial communities were closely related to soil organic matter, water content, and alkaline nitrogen. At the 1-year mark, soil property changes significantly reduced microbial diversity, which then began to recover after 2 years. The microbial network during 1-year subsidence was simpler, with 102 nodes, 179 edges, and an average degree of 3.51, indicating that early subsidence was unstable, and the microbial community was still adapting. By 1 year, community structure and interactions had begun to stabilize. Stochastic processes played a key role in microbial variability during short-term subsidence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Basic Microbiology
Journal of Basic Microbiology 生物-微生物学
CiteScore
6.10
自引率
0.00%
发文量
134
审稿时长
1.8 months
期刊介绍: The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions. Papers published deal with: microbial interactions (pathogenic, mutualistic, environmental), ecology, physiology, genetics and cell biology/development, new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications) novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信