揭示阿尔茨海默病中IGF-1的复杂性:从调节到治疗靶向的新见解。

IF 4.6 2区 医学 Q2 IMMUNOLOGY
Inflammopharmacology Pub Date : 2025-03-01 Epub Date: 2025-01-30 DOI:10.1007/s10787-025-01641-0
Navpreet Kaur, Khadga Raj Aran
{"title":"揭示阿尔茨海默病中IGF-1的复杂性:从调节到治疗靶向的新见解。","authors":"Navpreet Kaur, Khadga Raj Aran","doi":"10.1007/s10787-025-01641-0","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway. In addition to the physiological activities in the brain, numerous studies point to a potential protective role of the IGF-1 pathway in the pathogenesis of neurodegenerative diseases, such as AD. Interestingly, patients with AD often exhibit altered insulin and IGF-1 levels, along with an inadequate insulin response. Dysregulation of IGF-1 signaling contributes to hyperphosphorylation of tau, NFT accumulation, increased β- and γ-secretase activity, elevated Aβ production, and impaired Aβ clearance, highlighting the need to explore the role of this signaling for potential therapeutic targets of AD. This review explores the role of IGF signaling in AD pathology, highlighting IGF-1 as a promising therapeutic target due to its significant involvement in disease mechanisms. Modulating IGF-1 activity could help mitigate neurodegeneration and preserve cognitive function in AD. A comprehensive understanding of the mechanisms underlying IGF-1 dysregulation is crucial for developing targeted therapeutic strategies to address the complex and multifaceted nature of AD.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":"1311-1330"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering the intricacies of IGF-1 in Alzheimer's disease: new insights from regulation to therapeutic targeting.\",\"authors\":\"Navpreet Kaur, Khadga Raj Aran\",\"doi\":\"10.1007/s10787-025-01641-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway. In addition to the physiological activities in the brain, numerous studies point to a potential protective role of the IGF-1 pathway in the pathogenesis of neurodegenerative diseases, such as AD. Interestingly, patients with AD often exhibit altered insulin and IGF-1 levels, along with an inadequate insulin response. Dysregulation of IGF-1 signaling contributes to hyperphosphorylation of tau, NFT accumulation, increased β- and γ-secretase activity, elevated Aβ production, and impaired Aβ clearance, highlighting the need to explore the role of this signaling for potential therapeutic targets of AD. This review explores the role of IGF signaling in AD pathology, highlighting IGF-1 as a promising therapeutic target due to its significant involvement in disease mechanisms. Modulating IGF-1 activity could help mitigate neurodegeneration and preserve cognitive function in AD. A comprehensive understanding of the mechanisms underlying IGF-1 dysregulation is crucial for developing targeted therapeutic strategies to address the complex and multifaceted nature of AD.</p>\",\"PeriodicalId\":13551,\"journal\":{\"name\":\"Inflammopharmacology\",\"volume\":\" \",\"pages\":\"1311-1330\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10787-025-01641-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01641-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种进行性神经退行性疾病,其特征是淀粉样蛋白-β斑块和tau缠结的积累,导致认知能力下降和痴呆。胰岛素样生长因子-1 (IGF-1)在结构上与胰岛素相似,对细胞生长、分化、调节氧化应激、突触可塑性和线粒体功能至关重要。IGF-1通过与IGF-1受体(IGF-1R)结合,激活PI3K/Akt通路发挥生理作用。除了大脑中的生理活动外,许多研究指出IGF-1通路在神经退行性疾病(如AD)的发病机制中具有潜在的保护作用。有趣的是,AD患者经常表现出胰岛素和IGF-1水平的改变,同时胰岛素反应不足。IGF-1信号的失调会导致tau蛋白的过度磷酸化、NFT的积累、β和γ分泌酶活性的增加、Aβ产生的增加和Aβ清除的受损,因此有必要探索该信号在AD潜在治疗靶点中的作用。这篇综述探讨了IGF信号在AD病理中的作用,强调了IGF-1作为一个有希望的治疗靶点,因为它在疾病机制中有重要的参与。调节IGF-1活性有助于减轻阿尔茨海默病患者的神经变性和保持认知功能。全面了解IGF-1失调的机制对于制定有针对性的治疗策略以解决AD的复杂性和多面性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncovering the intricacies of IGF-1 in Alzheimer's disease: new insights from regulation to therapeutic targeting.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway. In addition to the physiological activities in the brain, numerous studies point to a potential protective role of the IGF-1 pathway in the pathogenesis of neurodegenerative diseases, such as AD. Interestingly, patients with AD often exhibit altered insulin and IGF-1 levels, along with an inadequate insulin response. Dysregulation of IGF-1 signaling contributes to hyperphosphorylation of tau, NFT accumulation, increased β- and γ-secretase activity, elevated Aβ production, and impaired Aβ clearance, highlighting the need to explore the role of this signaling for potential therapeutic targets of AD. This review explores the role of IGF signaling in AD pathology, highlighting IGF-1 as a promising therapeutic target due to its significant involvement in disease mechanisms. Modulating IGF-1 activity could help mitigate neurodegeneration and preserve cognitive function in AD. A comprehensive understanding of the mechanisms underlying IGF-1 dysregulation is crucial for developing targeted therapeutic strategies to address the complex and multifaceted nature of AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inflammopharmacology
Inflammopharmacology IMMUNOLOGYTOXICOLOGY-TOXICOLOGY
CiteScore
8.00
自引率
3.40%
发文量
200
期刊介绍: Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas: -Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states -Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs -Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents -Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain -Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs -Muscle-immune interactions during inflammation [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信