淡水鱼废液硫酸软骨素/硫酸皮肤素对MC3T3-E1细胞成骨作用的机制研究。

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Glycoconjugate Journal Pub Date : 2025-02-01 Epub Date: 2025-01-30 DOI:10.1007/s10719-025-10178-x
Chandra Gavva, Kunal Sharan, Nandini Chilkunda
{"title":"淡水鱼废液硫酸软骨素/硫酸皮肤素对MC3T3-E1细胞成骨作用的机制研究。","authors":"Chandra Gavva, Kunal Sharan, Nandini Chilkunda","doi":"10.1007/s10719-025-10178-x","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosaminoglycans (GAGs) are essential bone extracellular matrix molecules that regulate osteoblast differentiation. Numerous studies have explored endogenous and exogenous GAG osteoanabolic activities using appropriate in vitro and in vivo models. However, GAGs' underlying the mechanism of action and structure-function relationships need to be elucidated in detail. Earlier, we showed that exogenous GAG can bring about osteogenesis in pre-osteoblast cells. In the present study, we have elucidated the mechanism of action of exogenous GAGs, especially of the chondroitin sulfate/dermatan sulfate (CS/DS) class on osteogenesis. GAGs were immobilized, and osteoblast differentiation was evaluated in MC3T3-E1 cells. Results indicated that GAGs supported osteoblast differentiation by promoting collagen production, extracellular matrix formation, and subsequent mineralization. We elucidated the mechanisms underlying these effects by assessing the key signaling molecules involved in osteogenesis in response to exogenous CS/DS with/without BMP2. CS/DS alone significantly increased pERK1/2 and ATF4 expression levels differentially in a time-dependent manner without significant effects on BMP2, RUNX2, and pSMAD5 protein expression. On the other hand, CS/DS, in the presence of BMP2, differentially increased BMP2, pSMAD5, pERK1/2, RUNX2, and ATF4 expression levels at various time points. Collectively, these results strongly suggest that CS/DS can promote osteogenesis, and in the presence of BMP2, it could promote SMAD-mediated ERK-dependent osteogenesis.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"15-26"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic studies of chondroitin sulfate/dermatan sulfate isolated from freshwater fish discards on osteogenesis in MC3T3-E1 cells.\",\"authors\":\"Chandra Gavva, Kunal Sharan, Nandini Chilkunda\",\"doi\":\"10.1007/s10719-025-10178-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glycosaminoglycans (GAGs) are essential bone extracellular matrix molecules that regulate osteoblast differentiation. Numerous studies have explored endogenous and exogenous GAG osteoanabolic activities using appropriate in vitro and in vivo models. However, GAGs' underlying the mechanism of action and structure-function relationships need to be elucidated in detail. Earlier, we showed that exogenous GAG can bring about osteogenesis in pre-osteoblast cells. In the present study, we have elucidated the mechanism of action of exogenous GAGs, especially of the chondroitin sulfate/dermatan sulfate (CS/DS) class on osteogenesis. GAGs were immobilized, and osteoblast differentiation was evaluated in MC3T3-E1 cells. Results indicated that GAGs supported osteoblast differentiation by promoting collagen production, extracellular matrix formation, and subsequent mineralization. We elucidated the mechanisms underlying these effects by assessing the key signaling molecules involved in osteogenesis in response to exogenous CS/DS with/without BMP2. CS/DS alone significantly increased pERK1/2 and ATF4 expression levels differentially in a time-dependent manner without significant effects on BMP2, RUNX2, and pSMAD5 protein expression. On the other hand, CS/DS, in the presence of BMP2, differentially increased BMP2, pSMAD5, pERK1/2, RUNX2, and ATF4 expression levels at various time points. Collectively, these results strongly suggest that CS/DS can promote osteogenesis, and in the presence of BMP2, it could promote SMAD-mediated ERK-dependent osteogenesis.</p>\",\"PeriodicalId\":12762,\"journal\":{\"name\":\"Glycoconjugate Journal\",\"volume\":\" \",\"pages\":\"15-26\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glycoconjugate Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10719-025-10178-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycoconjugate Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10719-025-10178-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

糖胺聚糖是调节成骨细胞分化的重要骨细胞外基质分子。许多研究利用适当的体外和体内模型探索了内源性和外源性GAG的骨合成代谢活性。然而,GAGs的作用机制和结构-功能关系还有待进一步研究。先前,我们发现外源性GAG可以促进成骨前细胞的成骨。在本研究中,我们阐明了外源性GAGs的作用机制,特别是硫酸软骨素/硫酸皮肤素(CS/DS)类对成骨的作用。固定化GAGs,观察MC3T3-E1细胞成骨分化情况。结果表明,GAGs通过促进胶原生成、细胞外基质形成和随后的矿化来支持成骨细胞分化。我们通过评估与外源性CS/DS(含/不含BMP2)相关的关键信号分子,阐明了这些影响的机制。单独使用CS/DS可显著提高pERK1/2和ATF4的表达水平,且具有时间依赖性,对BMP2、RUNX2和pSMAD5蛋白表达无显著影响。另一方面,CS/DS在BMP2存在的情况下,不同时间点BMP2、pSMAD5、pERK1/2、RUNX2和ATF4的表达水平均有差异升高。综上所述,这些结果强烈提示CS/DS可以促进成骨,并且在BMP2存在的情况下,它可以促进smad介导的erk依赖性成骨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic studies of chondroitin sulfate/dermatan sulfate isolated from freshwater fish discards on osteogenesis in MC3T3-E1 cells.

Glycosaminoglycans (GAGs) are essential bone extracellular matrix molecules that regulate osteoblast differentiation. Numerous studies have explored endogenous and exogenous GAG osteoanabolic activities using appropriate in vitro and in vivo models. However, GAGs' underlying the mechanism of action and structure-function relationships need to be elucidated in detail. Earlier, we showed that exogenous GAG can bring about osteogenesis in pre-osteoblast cells. In the present study, we have elucidated the mechanism of action of exogenous GAGs, especially of the chondroitin sulfate/dermatan sulfate (CS/DS) class on osteogenesis. GAGs were immobilized, and osteoblast differentiation was evaluated in MC3T3-E1 cells. Results indicated that GAGs supported osteoblast differentiation by promoting collagen production, extracellular matrix formation, and subsequent mineralization. We elucidated the mechanisms underlying these effects by assessing the key signaling molecules involved in osteogenesis in response to exogenous CS/DS with/without BMP2. CS/DS alone significantly increased pERK1/2 and ATF4 expression levels differentially in a time-dependent manner without significant effects on BMP2, RUNX2, and pSMAD5 protein expression. On the other hand, CS/DS, in the presence of BMP2, differentially increased BMP2, pSMAD5, pERK1/2, RUNX2, and ATF4 expression levels at various time points. Collectively, these results strongly suggest that CS/DS can promote osteogenesis, and in the presence of BMP2, it could promote SMAD-mediated ERK-dependent osteogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glycoconjugate Journal
Glycoconjugate Journal 生物-生化与分子生物学
CiteScore
6.00
自引率
3.30%
发文量
63
审稿时长
1 months
期刊介绍: Glycoconjugate Journal publishes articles and reviews on all areas concerned with: function, composition, structure, biosynthesis, degradation, interactions, recognition and chemo-enzymatic synthesis of glycoconjugates (glycoproteins, glycolipids, oligosaccharides, polysaccharides and proteoglycans), biochemistry, molecular biology, biotechnology, immunology and cell biology of glycoconjugates, aspects related to disease processes (immunological, inflammatory, arthritic infections, metabolic disorders, malignancy, neurological disorders), structural and functional glycomics, glycoimmunology, glycovaccines, organic synthesis of glycoconjugates and the development of methodologies if biologically relevant, glycosylation changes in disease if focused on either the discovery of a novel disease marker or the improved understanding of some basic pathological mechanism, articles on the effects of toxicological agents (alcohol, tobacco, narcotics, environmental agents) on glycosylation, and the use of glycotherapeutics. Glycoconjugate Journal is the official journal of the International Glycoconjugate Organization, which is responsible for organizing the biennial International Symposia on Glycoconjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信