通过与髓磷脂少突胶质细胞糖蛋白(一种中枢神经系统特异性蛋白)的额外结合,增加抗体的脑半衰期。

IF 6.2 1区 医学 Q1 NEUROSCIENCES
Marie-Lynn Cuypers, Tom Jaspers, Jarne Clerckx, Simon Leekens, Christopher Cawthorne, Guy Bormans, Frederik Cleeren, Nick Geukens, Bart De Strooper, Maarten Dewilde
{"title":"通过与髓磷脂少突胶质细胞糖蛋白(一种中枢神经系统特异性蛋白)的额外结合,增加抗体的脑半衰期。","authors":"Marie-Lynn Cuypers, Tom Jaspers, Jarne Clerckx, Simon Leekens, Christopher Cawthorne, Guy Bormans, Frederik Cleeren, Nick Geukens, Bart De Strooper, Maarten Dewilde","doi":"10.1186/s12987-025-00624-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance. Therefore, we aim to increase the brain half-life of antibodies by binding to myelin oligodendrocyte glycoprotein (MOG), a CNS specific protein.</p><p><strong>Methods: </strong>Alpaca immunization with mouse/human MOG, and subsequent phage selections and screenings for MOG binding single variable domain antibodies (VHHs) were performed to find mouse/human cross-reactive VHHs. Their ability to increase the brain half-life of antibodies was evaluated in healthy wild-type mice by coupling two different MOG VHHs (low/high affinity) in a mono- and bivalent format to a β-secretase 1 (BACE1) inhibiting antibody or a control (anti-SARS-CoV-2) antibody, fused to an anti-transferrin receptor (TfR) VHH for active transport over the BBB. Brain pharmacokinetics and pharmacodynamics, CNS and peripheral biodistribution, and brain toxicity were evaluated after intravenous administration to balb/c mice.</p><p><strong>Results: </strong>Additional binding to MOG increases the C<sub>max</sub> and brain half-life of antibodies that are actively shuttled over the BBB. Anti-SARS-CoV-2 antibodies coupled with an anti-TfR VHH and two low affinity anti-MOG VHHs could be detected in brain 49 days after a single intravenous injection, which is a major improvement compared to an anti-SARS-CoV-2 antibody fused to an anti-TfR VHH which cannot be detected in brain anymore one week post treatment. Additional MOG binding of antibodies does not affect peripheral biodistribution but alters brain distribution to white matter localization and less neuronal internalization.</p><p><strong>Conclusions: </strong>We have discovered mouse/human/cynomolgus cross-reactive anti-MOG VHHs which have the ability to drastically increase brain exposure of antibodies. Combining MOG and TfR binding leads to distinct PK, biodistribution, and brain exposure, differentiating it from the highly investigated TfR-shuttling. It is the first time such long brain antibody exposure has been demonstrated after one single dose. This new approach of adding a binding moiety for brain specific targets to RMT shuttling antibodies is a huge advancement for the field and paves the way for further research into brain half-life extension.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"11"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783731/pdf/","citationCount":"0","resultStr":"{\"title\":\"Increasing brain half-life of antibodies by additional binding to myelin oligodendrocyte glycoprotein, a CNS specific protein.\",\"authors\":\"Marie-Lynn Cuypers, Tom Jaspers, Jarne Clerckx, Simon Leekens, Christopher Cawthorne, Guy Bormans, Frederik Cleeren, Nick Geukens, Bart De Strooper, Maarten Dewilde\",\"doi\":\"10.1186/s12987-025-00624-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance. Therefore, we aim to increase the brain half-life of antibodies by binding to myelin oligodendrocyte glycoprotein (MOG), a CNS specific protein.</p><p><strong>Methods: </strong>Alpaca immunization with mouse/human MOG, and subsequent phage selections and screenings for MOG binding single variable domain antibodies (VHHs) were performed to find mouse/human cross-reactive VHHs. Their ability to increase the brain half-life of antibodies was evaluated in healthy wild-type mice by coupling two different MOG VHHs (low/high affinity) in a mono- and bivalent format to a β-secretase 1 (BACE1) inhibiting antibody or a control (anti-SARS-CoV-2) antibody, fused to an anti-transferrin receptor (TfR) VHH for active transport over the BBB. Brain pharmacokinetics and pharmacodynamics, CNS and peripheral biodistribution, and brain toxicity were evaluated after intravenous administration to balb/c mice.</p><p><strong>Results: </strong>Additional binding to MOG increases the C<sub>max</sub> and brain half-life of antibodies that are actively shuttled over the BBB. Anti-SARS-CoV-2 antibodies coupled with an anti-TfR VHH and two low affinity anti-MOG VHHs could be detected in brain 49 days after a single intravenous injection, which is a major improvement compared to an anti-SARS-CoV-2 antibody fused to an anti-TfR VHH which cannot be detected in brain anymore one week post treatment. Additional MOG binding of antibodies does not affect peripheral biodistribution but alters brain distribution to white matter localization and less neuronal internalization.</p><p><strong>Conclusions: </strong>We have discovered mouse/human/cynomolgus cross-reactive anti-MOG VHHs which have the ability to drastically increase brain exposure of antibodies. Combining MOG and TfR binding leads to distinct PK, biodistribution, and brain exposure, differentiating it from the highly investigated TfR-shuttling. It is the first time such long brain antibody exposure has been demonstrated after one single dose. This new approach of adding a binding moiety for brain specific targets to RMT shuttling antibodies is a huge advancement for the field and paves the way for further research into brain half-life extension.</p>\",\"PeriodicalId\":12321,\"journal\":{\"name\":\"Fluids and Barriers of the CNS\",\"volume\":\"22 1\",\"pages\":\"11\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783731/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids and Barriers of the CNS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12987-025-00624-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-025-00624-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:治疗性抗体用于治疗神经系统疾病显示出巨大的潜力,但由于大脑暴露有限,其应用相当有限。受体介导的胞质转运(RMT)是一种研究最充分的增强脑内蛋白质治疗流入的方法,它通过靶向营养受体将蛋白质治疗药物及其内源性货物运送过血脑屏障(BBB)。虽然RMT可以实现更高的脑暴露,但由于大脑清除相当快,时间框架很短。因此,我们的目标是通过结合髓鞘少突胶质细胞糖蛋白(MOG)(一种中枢神经系统特异性蛋白)来增加抗体的脑半衰期。方法:用小鼠/人MOG免疫羊驼,筛选MOG结合的单变量结构域抗体(VHHs),寻找鼠/人交叉反应的VHHs。在健康野生型小鼠中,通过以单价和二价形式将两种不同的MOG VHH(低/高亲和力)与β-分泌酶1 (BACE1)抑制抗体或对照(抗sars - cov -2)抗体偶联,在血脑屏障上与抗转铁蛋白受体(TfR) VHH融合,以主动运输,来评估它们增加抗体脑半衰期的能力。对balb/c小鼠静脉给药后的脑药代动力学和药效学、中枢神经系统和外周生物分布以及脑毒性进行了评价。结果:与MOG的额外结合增加了活跃穿梭于血脑屏障的抗体的Cmax和脑半衰期。单次静脉注射后49天可在脑内检测到抗sars - cov -2抗体与抗tfr VHH和两种低亲和力抗mog VHH结合,与治疗后一周无法在脑内检测到抗sars - cov -2抗体相比,这是一个重大进步。额外的MOG结合抗体不会影响外周生物分布,但会改变大脑分布,使其向白质定位,减少神经元内化。结论:我们发现小鼠/人/食蟹的交叉反应性抗mog vhs具有显著增加抗体脑暴露的能力。结合MOG和TfR结合导致不同的PK,生物分布和脑暴露,将其与高度研究的TfR穿梭区分开来。这是第一次证明在一次剂量后长时间接触脑部抗体。这种在RMT穿梭抗体中添加脑特异性靶点结合片段的新方法是该领域的巨大进步,并为进一步研究脑半衰期延长铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increasing brain half-life of antibodies by additional binding to myelin oligodendrocyte glycoprotein, a CNS specific protein.

Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance. Therefore, we aim to increase the brain half-life of antibodies by binding to myelin oligodendrocyte glycoprotein (MOG), a CNS specific protein.

Methods: Alpaca immunization with mouse/human MOG, and subsequent phage selections and screenings for MOG binding single variable domain antibodies (VHHs) were performed to find mouse/human cross-reactive VHHs. Their ability to increase the brain half-life of antibodies was evaluated in healthy wild-type mice by coupling two different MOG VHHs (low/high affinity) in a mono- and bivalent format to a β-secretase 1 (BACE1) inhibiting antibody or a control (anti-SARS-CoV-2) antibody, fused to an anti-transferrin receptor (TfR) VHH for active transport over the BBB. Brain pharmacokinetics and pharmacodynamics, CNS and peripheral biodistribution, and brain toxicity were evaluated after intravenous administration to balb/c mice.

Results: Additional binding to MOG increases the Cmax and brain half-life of antibodies that are actively shuttled over the BBB. Anti-SARS-CoV-2 antibodies coupled with an anti-TfR VHH and two low affinity anti-MOG VHHs could be detected in brain 49 days after a single intravenous injection, which is a major improvement compared to an anti-SARS-CoV-2 antibody fused to an anti-TfR VHH which cannot be detected in brain anymore one week post treatment. Additional MOG binding of antibodies does not affect peripheral biodistribution but alters brain distribution to white matter localization and less neuronal internalization.

Conclusions: We have discovered mouse/human/cynomolgus cross-reactive anti-MOG VHHs which have the ability to drastically increase brain exposure of antibodies. Combining MOG and TfR binding leads to distinct PK, biodistribution, and brain exposure, differentiating it from the highly investigated TfR-shuttling. It is the first time such long brain antibody exposure has been demonstrated after one single dose. This new approach of adding a binding moiety for brain specific targets to RMT shuttling antibodies is a huge advancement for the field and paves the way for further research into brain half-life extension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信