古细菌信号网络——对产甲烷古菌活性甲烷古菌组氨酸激酶和反应调节因子结构和功能的新认识。

IF 4.3 2区 生物学 Q2 MICROBIOLOGY
Nora F. K. Georgiev, Anne L. Andersson, Zoe Ruppe, Loriana Kattwinkel, Nicole Frankenberg-Dinkel
{"title":"古细菌信号网络——对产甲烷古菌活性甲烷古菌组氨酸激酶和反应调节因子结构和功能的新认识。","authors":"Nora F. K. Georgiev,&nbsp;Anne L. Andersson,&nbsp;Zoe Ruppe,&nbsp;Loriana Kattwinkel,&nbsp;Nicole Frankenberg-Dinkel","doi":"10.1111/1462-2920.70047","DOIUrl":null,"url":null,"abstract":"<p>The methanogenic archaeon <i>Methanosarcina acetivorans</i> has one of the largest known archaeal genomes. With 53 histidine kinases (HK), it also has the largest set of signal transduction systems. To gain insight into the hitherto not very well understood signal transduction in Archaea and <i>M. acetivorans</i> in particular, we have categorised the predicted HK into four types based on their H-box using an in silico analysis. Representatives of three types were recombinantly produced in <i>Escherichia coli</i> and purified by affinity chromatography. All investigated kinases showed ATP binding and hydrolysis. The MA_type 2 kinase, which lacks the classical H-box, showed no autokinase activity. Furthermore, we could show that <i>M. acetivorans</i> possesses an above-average number of response regulators (RR), consisting of only a REC domain (REC-only). Using the hybrid kinase MA4377 as an example we show that both intra-and intermolecular transphosphorylation to REC domains occur. These experiments are furthermore indicative of complex phosphorelay systems in <i>M. acetivorans</i> and suggest that REC-only proteins act as a central hub in signal transduction in <i>M. acetivorans</i>.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784639/pdf/","citationCount":"0","resultStr":"{\"title\":\"Archaeal Signalling Networks—New Insights Into the Structure and Function of Histidine Kinases and Response Regulators of the Methanogenic Archaeon Methanosarcina acetivorans\",\"authors\":\"Nora F. K. Georgiev,&nbsp;Anne L. Andersson,&nbsp;Zoe Ruppe,&nbsp;Loriana Kattwinkel,&nbsp;Nicole Frankenberg-Dinkel\",\"doi\":\"10.1111/1462-2920.70047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The methanogenic archaeon <i>Methanosarcina acetivorans</i> has one of the largest known archaeal genomes. With 53 histidine kinases (HK), it also has the largest set of signal transduction systems. To gain insight into the hitherto not very well understood signal transduction in Archaea and <i>M. acetivorans</i> in particular, we have categorised the predicted HK into four types based on their H-box using an in silico analysis. Representatives of three types were recombinantly produced in <i>Escherichia coli</i> and purified by affinity chromatography. All investigated kinases showed ATP binding and hydrolysis. The MA_type 2 kinase, which lacks the classical H-box, showed no autokinase activity. Furthermore, we could show that <i>M. acetivorans</i> possesses an above-average number of response regulators (RR), consisting of only a REC domain (REC-only). Using the hybrid kinase MA4377 as an example we show that both intra-and intermolecular transphosphorylation to REC domains occur. These experiments are furthermore indicative of complex phosphorelay systems in <i>M. acetivorans</i> and suggest that REC-only proteins act as a central hub in signal transduction in <i>M. acetivorans</i>.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784639/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70047\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70047","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

产甲烷古菌活性产甲烷古菌是已知的最大的古菌基因组之一。它有53个组氨酸激酶(HK),也有最大的信号转导系统。为了深入了解迄今为止尚未很好理解的古细菌和活动菌的信号转导,我们使用硅分析将预测的HK分为四种类型,基于它们的H-box。在大肠杆菌中重组产生三种类型的代表,并通过亲和层析纯化。所有研究的激酶都显示ATP结合和水解。缺乏经典H-box的MA_type 2激酶没有自激酶活性。此外,我们可以证明m.a actitivorans具有高于平均水平的应答调节因子(RR)数量,仅由REC结构域(REC-only)组成。以杂化激酶MA4377为例,我们发现分子内和分子间都发生了转磷酸化到REC结构域。这些实验进一步表明,活性支链菌中存在复杂的磷传递系统,并表明仅rec蛋白在活性支链菌的信号转导中起中心枢纽作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Archaeal Signalling Networks—New Insights Into the Structure and Function of Histidine Kinases and Response Regulators of the Methanogenic Archaeon Methanosarcina acetivorans

Archaeal Signalling Networks—New Insights Into the Structure and Function of Histidine Kinases and Response Regulators of the Methanogenic Archaeon Methanosarcina acetivorans

Archaeal Signalling Networks—New Insights Into the Structure and Function of Histidine Kinases and Response Regulators of the Methanogenic Archaeon Methanosarcina acetivorans

The methanogenic archaeon Methanosarcina acetivorans has one of the largest known archaeal genomes. With 53 histidine kinases (HK), it also has the largest set of signal transduction systems. To gain insight into the hitherto not very well understood signal transduction in Archaea and M. acetivorans in particular, we have categorised the predicted HK into four types based on their H-box using an in silico analysis. Representatives of three types were recombinantly produced in Escherichia coli and purified by affinity chromatography. All investigated kinases showed ATP binding and hydrolysis. The MA_type 2 kinase, which lacks the classical H-box, showed no autokinase activity. Furthermore, we could show that M. acetivorans possesses an above-average number of response regulators (RR), consisting of only a REC domain (REC-only). Using the hybrid kinase MA4377 as an example we show that both intra-and intermolecular transphosphorylation to REC domains occur. These experiments are furthermore indicative of complex phosphorelay systems in M. acetivorans and suggest that REC-only proteins act as a central hub in signal transduction in M. acetivorans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信