NADPH氧化酶衍生的ROS通过激活l型电压门控Ca2+通道促进出生后早期大鼠动脉收缩。

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Free Radical Research Pub Date : 2025-01-01 Epub Date: 2024-12-30 DOI:10.1080/10715762.2024.2448483
Anastasia A Shvetsova, Valentina S Shateeva, Margarita A Khlystova, Yulia A Makukha, Olga S Tarasova, Dina K Gaynullina
{"title":"NADPH氧化酶衍生的ROS通过激活l型电压门控Ca2+通道促进出生后早期大鼠动脉收缩。","authors":"Anastasia A Shvetsova, Valentina S Shateeva, Margarita A Khlystova, Yulia A Makukha, Olga S Tarasova, Dina K Gaynullina","doi":"10.1080/10715762.2024.2448483","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca<sup>2+</sup> channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways. Saphenous arteries from 11- to 15-day-old male rats were studied using quantitative PCR, isometric myography and lucigenin-enhanced chemiluminescence. Arterial tissue of early postnatal rats contained <i>Nox2</i>, <i>Nox4</i>, <i>Duox1</i> and <i>Duox2</i> mRNAs, among which <i>Nox2</i> mRNA was the most abundant. Pan-NADPH oxidase inhibitor VAS2870 (10 µM) significantly reduced arterial contractile responses to methoxamine. The inhibitors of Rho-kinase (Y27632, 3 µM), PKC (GF109203X, 10 µM) and Src-kinase (PP2, 10 µM), as well as LTCC blockers (nimodipine, 0.1 µM, and verapamil, 0.1 μM) also reduced methoxamine-induced contraction. Importantly, the effect of VAS2870 persisted in the presence of Rho-kinase, PKC or Src-kinase inhibitors, but not in the presence of LTCC blocker. Notably, the blockade of LTCC did not affect either basal or NADPH-induced O<sub>2</sub><sup>•-</sup> production. Our data show that LTCC, but not Rho-kinase, PKC or Src-kinase are involved into procontractile effect of ROS, produced by NADPH oxidase, in saphenous artery of young rats. Сalcium influx through LTCC does not activate ROS production by NADPH oxidase.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"59 1","pages":"49-60"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NADPH oxidase derived ROS promote arterial contraction in early postnatal rats by activation of L-type voltage-gated Ca<sup>2+</sup> channels.\",\"authors\":\"Anastasia A Shvetsova, Valentina S Shateeva, Margarita A Khlystova, Yulia A Makukha, Olga S Tarasova, Dina K Gaynullina\",\"doi\":\"10.1080/10715762.2024.2448483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca<sup>2+</sup> channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways. Saphenous arteries from 11- to 15-day-old male rats were studied using quantitative PCR, isometric myography and lucigenin-enhanced chemiluminescence. Arterial tissue of early postnatal rats contained <i>Nox2</i>, <i>Nox4</i>, <i>Duox1</i> and <i>Duox2</i> mRNAs, among which <i>Nox2</i> mRNA was the most abundant. Pan-NADPH oxidase inhibitor VAS2870 (10 µM) significantly reduced arterial contractile responses to methoxamine. The inhibitors of Rho-kinase (Y27632, 3 µM), PKC (GF109203X, 10 µM) and Src-kinase (PP2, 10 µM), as well as LTCC blockers (nimodipine, 0.1 µM, and verapamil, 0.1 μM) also reduced methoxamine-induced contraction. Importantly, the effect of VAS2870 persisted in the presence of Rho-kinase, PKC or Src-kinase inhibitors, but not in the presence of LTCC blocker. Notably, the blockade of LTCC did not affect either basal or NADPH-induced O<sub>2</sub><sup>•-</sup> production. Our data show that LTCC, but not Rho-kinase, PKC or Src-kinase are involved into procontractile effect of ROS, produced by NADPH oxidase, in saphenous artery of young rats. Сalcium influx through LTCC does not activate ROS production by NADPH oxidase.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":\"59 1\",\"pages\":\"49-60\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2024.2448483\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2024.2448483","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由NADPH氧化酶产生的活性氧(ROS)促进外周动脉收缩,与成年期相比,在出生后早期尤其明显,但这种血管舒张作用的机制尚不清楚。我们验证了rho激酶和蛋白激酶C (PKC)介导NADPH氧化酶衍生的ROS对出生后早期大鼠外周动脉收缩性影响的假设。此外,我们评估了src激酶和l型电压门控Ca2+通道(LTCC)参与由NADPH氧化酶产生的ROS的促收缩影响,因为它们已知与rho激酶和PKC途径相互作用。采用定量PCR、等长肌图和荧光化学发光技术对11 ~ 15日龄雄性大鼠大隐动脉进行了研究。产后早期大鼠动脉组织中含有Nox2、Nox4、Duox1和Duox2 mRNA,其中以Nox2 mRNA含量最多。Pan-NADPH氧化酶抑制剂VAS2870(10µM)显著降低动脉对甲氧胺的收缩反应。rho激酶(Y27632, 3µM)、PKC (GF109203X, 10µM)和src激酶(PP2, 10µM)抑制剂以及LTCC阻滞剂(尼莫地平,0.1µM,维拉帕米,0.1 μM)也能减轻甲氧胺诱导的收缩。重要的是,VAS2870的作用在rho激酶、PKC或src激酶抑制剂存在时持续存在,而在LTCC阻滞剂存在时则不存在。值得注意的是,LTCC的阻断不影响基础或nadph诱导的O2•-产生。我们的数据表明,幼龄大鼠隐动脉内NADPH氧化酶产生ROS的促收缩作用与LTCC有关,而与rho激酶、PKC激酶和src激酶无关。Сalcium通过LTCC的内流不激活NADPH氧化酶产生ROS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NADPH oxidase derived ROS promote arterial contraction in early postnatal rats by activation of L-type voltage-gated Ca2+ channels.

Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca2+ channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways. Saphenous arteries from 11- to 15-day-old male rats were studied using quantitative PCR, isometric myography and lucigenin-enhanced chemiluminescence. Arterial tissue of early postnatal rats contained Nox2, Nox4, Duox1 and Duox2 mRNAs, among which Nox2 mRNA was the most abundant. Pan-NADPH oxidase inhibitor VAS2870 (10 µM) significantly reduced arterial contractile responses to methoxamine. The inhibitors of Rho-kinase (Y27632, 3 µM), PKC (GF109203X, 10 µM) and Src-kinase (PP2, 10 µM), as well as LTCC blockers (nimodipine, 0.1 µM, and verapamil, 0.1 μM) also reduced methoxamine-induced contraction. Importantly, the effect of VAS2870 persisted in the presence of Rho-kinase, PKC or Src-kinase inhibitors, but not in the presence of LTCC blocker. Notably, the blockade of LTCC did not affect either basal or NADPH-induced O2•- production. Our data show that LTCC, but not Rho-kinase, PKC or Src-kinase are involved into procontractile effect of ROS, produced by NADPH oxidase, in saphenous artery of young rats. Сalcium influx through LTCC does not activate ROS production by NADPH oxidase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信