模拟病理GSX2变异,选择性地改变DNA结合,揭示了亚型小鼠基底神经节和后脑缺陷。

IF 3.3 3区 医学 Q2 CELL BIOLOGY
Disease Models & Mechanisms Pub Date : 2025-02-01 Epub Date: 2025-02-20 DOI:10.1242/dmm.052110
Laura Tweedie, Matthew R Riccetti, Brittany Cain, Shenyue Qin, Joseph Salomone, Jordan A Webb, Amy Riesenberg, Lisa A Ehrman, Ronald R Waclaw, Rhett A Kovall, Brian Gebelein, Kenneth Campbell
{"title":"模拟病理GSX2变异,选择性地改变DNA结合,揭示了亚型小鼠基底神经节和后脑缺陷。","authors":"Laura Tweedie, Matthew R Riccetti, Brittany Cain, Shenyue Qin, Joseph Salomone, Jordan A Webb, Amy Riesenberg, Lisa A Ehrman, Ronald R Waclaw, Rhett A Kovall, Brian Gebelein, Kenneth Campbell","doi":"10.1242/dmm.052110","DOIUrl":null,"url":null,"abstract":"<p><p>Gsx2 is a homeodomain transcription factor critical for development of the ventral telencephalon and hindbrain in mouse. Loss of Gsx2 function results in severe basal ganglia dysgenesis and defects in the nucleus tractus solitarius (nTS) of the hindbrain, together with respiratory failure at birth. De Mori et al. (2019) reported two patients with severe dystonia and basal ganglia dysgenesis that encode distinct recessive GSX2 variants, including a missense variant within the homeodomain (GSX2Q251R). Hence, we modelled the homologous Gsx2 mutation (i.e. Gsx2Q252R) in mouse, and our biochemical analysis revealed that this variant selectively altered DNA binding. Moreover, mice carrying the Gsx2Q252R allele exhibited basal ganglia dysgenesis, albeit to a lesser extent than did Gsx2 null mice. A notable difference between Gsx2Q252R and Gsx2 null mice was that Gsx2Q252R mice survived, and hindbrain analysis revealed relative sparing of the glutamatergic nTS neurons and catecholaminergic A1/C1 and A2/C2 groups. Thus, the Gsx2Q252R variant is a hypomorph that compromises a subset of Gsx2-dependent neuronal subtypes and highlights a critical role for distinct thresholds of catecholaminergic and/or glutamatergic nTS neurons for viability.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876842/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modelling a pathological GSX2 variant that selectively alters DNA binding reveals hypomorphic mouse brain defects.\",\"authors\":\"Laura Tweedie, Matthew R Riccetti, Brittany Cain, Shenyue Qin, Joseph Salomone, Jordan A Webb, Amy Riesenberg, Lisa A Ehrman, Ronald R Waclaw, Rhett A Kovall, Brian Gebelein, Kenneth Campbell\",\"doi\":\"10.1242/dmm.052110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gsx2 is a homeodomain transcription factor critical for development of the ventral telencephalon and hindbrain in mouse. Loss of Gsx2 function results in severe basal ganglia dysgenesis and defects in the nucleus tractus solitarius (nTS) of the hindbrain, together with respiratory failure at birth. De Mori et al. (2019) reported two patients with severe dystonia and basal ganglia dysgenesis that encode distinct recessive GSX2 variants, including a missense variant within the homeodomain (GSX2Q251R). Hence, we modelled the homologous Gsx2 mutation (i.e. Gsx2Q252R) in mouse, and our biochemical analysis revealed that this variant selectively altered DNA binding. Moreover, mice carrying the Gsx2Q252R allele exhibited basal ganglia dysgenesis, albeit to a lesser extent than did Gsx2 null mice. A notable difference between Gsx2Q252R and Gsx2 null mice was that Gsx2Q252R mice survived, and hindbrain analysis revealed relative sparing of the glutamatergic nTS neurons and catecholaminergic A1/C1 and A2/C2 groups. Thus, the Gsx2Q252R variant is a hypomorph that compromises a subset of Gsx2-dependent neuronal subtypes and highlights a critical role for distinct thresholds of catecholaminergic and/or glutamatergic nTS neurons for viability.</p>\",\"PeriodicalId\":11144,\"journal\":{\"name\":\"Disease Models & Mechanisms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876842/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disease Models & Mechanisms\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1242/dmm.052110\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.052110","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Gsx2是一种同源结构域转录因子,对小鼠腹端脑和后脑的发育至关重要。Gsx2功能的丧失会导致严重的基底神经节发育不良,以及后脑孤束核(nTS)缺陷,并在出生时出现呼吸衰竭。De Mori等人(2019)报道了两名患有严重肌张力障碍和基底神经节发育不良的患者,他们编码不同的隐性GSX2变异,包括同源结构域内的错义突变(GSX2Q251R)。因此,我们在小鼠中模拟了同源Gsx2突变(即Gsx2Q252R),我们的生化分析显示该变异选择性地改变了DNA结合。此外,携带Gsx2Q252R等位基因的小鼠表现出基底神经节发育不良,尽管程度低于Gsx2阴性小鼠。Gsx2Q252R与Gsx2阴性小鼠的显著差异是Gsx2Q252R小鼠存活,后脑分析显示谷氨酸能nTS神经元和儿茶酚胺能A1/C1、A2/C2组相对保留。因此,Gsx2Q252R变异是一种低形态,损害了gsx2依赖性神经元亚型的一个子集,并突出了儿茶酚胺能和/或谷氨酸能nTS神经元生存能力的不同阈值的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modelling a pathological GSX2 variant that selectively alters DNA binding reveals hypomorphic mouse brain defects.

Modelling a pathological GSX2 variant that selectively alters DNA binding reveals hypomorphic mouse brain defects.

Modelling a pathological GSX2 variant that selectively alters DNA binding reveals hypomorphic mouse brain defects.

Modelling a pathological GSX2 variant that selectively alters DNA binding reveals hypomorphic mouse brain defects.

Gsx2 is a homeodomain transcription factor critical for development of the ventral telencephalon and hindbrain in mouse. Loss of Gsx2 function results in severe basal ganglia dysgenesis and defects in the nucleus tractus solitarius (nTS) of the hindbrain, together with respiratory failure at birth. De Mori et al. (2019) reported two patients with severe dystonia and basal ganglia dysgenesis that encode distinct recessive GSX2 variants, including a missense variant within the homeodomain (GSX2Q251R). Hence, we modelled the homologous Gsx2 mutation (i.e. Gsx2Q252R) in mouse, and our biochemical analysis revealed that this variant selectively altered DNA binding. Moreover, mice carrying the Gsx2Q252R allele exhibited basal ganglia dysgenesis, albeit to a lesser extent than did Gsx2 null mice. A notable difference between Gsx2Q252R and Gsx2 null mice was that Gsx2Q252R mice survived, and hindbrain analysis revealed relative sparing of the glutamatergic nTS neurons and catecholaminergic A1/C1 and A2/C2 groups. Thus, the Gsx2Q252R variant is a hypomorph that compromises a subset of Gsx2-dependent neuronal subtypes and highlights a critical role for distinct thresholds of catecholaminergic and/or glutamatergic nTS neurons for viability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Disease Models & Mechanisms
Disease Models & Mechanisms 医学-病理学
CiteScore
6.60
自引率
7.00%
发文量
203
审稿时长
6-12 weeks
期刊介绍: Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信