褪黑素过表达在阿尔茨海默病管理中的作用:治疗探索。

IF 2.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Babita Gupta, Rishabha Malviya, Sonali Sundram, Sathvik Belagodu Sridhar, Deependra Pratap Singh
{"title":"褪黑素过表达在阿尔茨海默病管理中的作用:治疗探索。","authors":"Babita Gupta, Rishabha Malviya, Sonali Sundram, Sathvik Belagodu Sridhar, Deependra Pratap Singh","doi":"10.2174/0115680266327614241121050448","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's Disease (AD), a progressive neurodegenerative disorder, is characterized by the accumulation of neurofibrillary tangles and β-amyloid plaques, leading to a decline in cognitive function. AD is characterized by tau protein hyperphosphorylation and extracellular β-amyloid accumulation. Even after much research, there are still no proven cures for AD. The neuroprotective, anti-inflammatory, and antioxidant qualities of melatonin, a hormone mostly produced by the pineal gland, have drawn interest as a possible treatment option for AD. This study looks at new evidence that suggests melatonin overexpression to be a promising therapy option for AD. Melatonin levels naturally decline with age and decrease more significantly in individuals with AD, worsening neurodegenerative processes. Melatonin has therapeutic potential as it inhibits Aβ formation, prevents amyloid fibril extension through structure-dependent interactions, and protects neurons from Aβ-induced toxicity. Melatonin promotes neurogenesis, which is decreased in AD, suggesting it may treat the disease's many pathologies. The review emphasizes the importance of melatonin's mechanisms of action, including its capacity to reduce neuroinflammation, regulate mitochondrial function, scavenge free radicals, and influence apoptotic pathways. As research into AD continues, this article provides a forward-looking perspective on how future studies could leverage melatonin's multifaceted neuroprotective properties to develop more effective treatments for AD.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melatonin Overexpression in the Management of Alzheimer's Disease: Therapeutic Exploration.\",\"authors\":\"Babita Gupta, Rishabha Malviya, Sonali Sundram, Sathvik Belagodu Sridhar, Deependra Pratap Singh\",\"doi\":\"10.2174/0115680266327614241121050448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's Disease (AD), a progressive neurodegenerative disorder, is characterized by the accumulation of neurofibrillary tangles and β-amyloid plaques, leading to a decline in cognitive function. AD is characterized by tau protein hyperphosphorylation and extracellular β-amyloid accumulation. Even after much research, there are still no proven cures for AD. The neuroprotective, anti-inflammatory, and antioxidant qualities of melatonin, a hormone mostly produced by the pineal gland, have drawn interest as a possible treatment option for AD. This study looks at new evidence that suggests melatonin overexpression to be a promising therapy option for AD. Melatonin levels naturally decline with age and decrease more significantly in individuals with AD, worsening neurodegenerative processes. Melatonin has therapeutic potential as it inhibits Aβ formation, prevents amyloid fibril extension through structure-dependent interactions, and protects neurons from Aβ-induced toxicity. Melatonin promotes neurogenesis, which is decreased in AD, suggesting it may treat the disease's many pathologies. The review emphasizes the importance of melatonin's mechanisms of action, including its capacity to reduce neuroinflammation, regulate mitochondrial function, scavenge free radicals, and influence apoptotic pathways. As research into AD continues, this article provides a forward-looking perspective on how future studies could leverage melatonin's multifaceted neuroprotective properties to develop more effective treatments for AD.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266327614241121050448\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266327614241121050448","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种进行性神经退行性疾病,其特征是神经原纤维缠结和β-淀粉样斑块的积累,导致认知功能下降。AD的特征是tau蛋白过度磷酸化和细胞外β-淀粉样蛋白积累。即使经过大量的研究,仍然没有证实的治疗老年痴呆症的方法。褪黑素是一种主要由松果体产生的激素,它具有神经保护、抗炎和抗氧化的特性,作为一种治疗AD的可能选择引起了人们的兴趣。这项研究着眼于新的证据,表明褪黑激素过表达是一种有希望的治疗AD的选择。褪黑素水平随着年龄的增长而自然下降,阿尔茨海默病患者的褪黑素水平下降更明显,神经退行性过程恶化。褪黑素具有治疗潜力,因为它可以抑制Aβ的形成,通过结构依赖的相互作用阻止淀粉样蛋白纤维的延伸,并保护神经元免受Aβ诱导的毒性。褪黑素促进神经发生,这在阿尔茨海默病中减少,表明它可能治疗阿尔茨海默病的许多病理。这篇综述强调了褪黑素作用机制的重要性,包括其减少神经炎症、调节线粒体功能、清除自由基和影响细胞凋亡途径的能力。随着对阿尔茨海默病研究的继续,本文为未来研究如何利用褪黑素的多方面神经保护特性来开发更有效的阿尔茨海默病治疗方法提供了前瞻性的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Melatonin Overexpression in the Management of Alzheimer's Disease: Therapeutic Exploration.

Alzheimer's Disease (AD), a progressive neurodegenerative disorder, is characterized by the accumulation of neurofibrillary tangles and β-amyloid plaques, leading to a decline in cognitive function. AD is characterized by tau protein hyperphosphorylation and extracellular β-amyloid accumulation. Even after much research, there are still no proven cures for AD. The neuroprotective, anti-inflammatory, and antioxidant qualities of melatonin, a hormone mostly produced by the pineal gland, have drawn interest as a possible treatment option for AD. This study looks at new evidence that suggests melatonin overexpression to be a promising therapy option for AD. Melatonin levels naturally decline with age and decrease more significantly in individuals with AD, worsening neurodegenerative processes. Melatonin has therapeutic potential as it inhibits Aβ formation, prevents amyloid fibril extension through structure-dependent interactions, and protects neurons from Aβ-induced toxicity. Melatonin promotes neurogenesis, which is decreased in AD, suggesting it may treat the disease's many pathologies. The review emphasizes the importance of melatonin's mechanisms of action, including its capacity to reduce neuroinflammation, regulate mitochondrial function, scavenge free radicals, and influence apoptotic pathways. As research into AD continues, this article provides a forward-looking perspective on how future studies could leverage melatonin's multifaceted neuroprotective properties to develop more effective treatments for AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
2.90%
发文量
186
审稿时长
3-8 weeks
期刊介绍: Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信