一个统一的组合框架的依赖测试与应用于微生物组关联研究。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-01-07 DOI:10.1093/biomtc/ujaf001
Xiufan Yu, Linjun Zhang, Arun Srinivasan, Min-Ge Xie, Lingzhou Xue
{"title":"一个统一的组合框架的依赖测试与应用于微生物组关联研究。","authors":"Xiufan Yu, Linjun Zhang, Arun Srinivasan, Min-Ge Xie, Lingzhou Xue","doi":"10.1093/biomtc/ujaf001","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a novel meta-analysis framework to combine dependent tests under a general setting, and utilize it to synthesize various microbiome association tests that are calculated from the same dataset. Our development builds upon the classical meta-analysis methods of aggregating P-values and also a more recent general method of combining confidence distributions, but makes generalizations to handle dependent tests. The proposed framework ensures rigorous statistical guarantees, and we provide a comprehensive study and compare it with various existing dependent combination methods. Notably, we demonstrate that the widely used Cauchy combination method for dependent tests, referred to as the vanilla Cauchy combination in this article, can be viewed as a special case within our framework. Moreover, the proposed framework provides a way to address the problem when the distributional assumptions underlying the vanilla Cauchy combination are violated. Our numerical results demonstrate that ignoring the dependence among the to-be-combined components may lead to a severe size distortion phenomenon. Compared to the existing P-value combination methods, including the vanilla Cauchy combination method and other methods, the proposed combination framework is flexible and can be adapted to handle the dependence accurately and utilizes the information efficiently to construct tests with accurate size and enhanced power. The development is applied to the microbiome association studies, where we aggregate information from multiple existing tests using the same dataset. The combined tests harness the strengths of each individual test across a wide range of alternative spaces, enabling more efficient and meaningful discoveries of vital microbiome associations.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783248/pdf/","citationCount":"0","resultStr":"{\"title\":\"A unified combination framework for dependent tests with applications to microbiome association studies.\",\"authors\":\"Xiufan Yu, Linjun Zhang, Arun Srinivasan, Min-Ge Xie, Lingzhou Xue\",\"doi\":\"10.1093/biomtc/ujaf001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce a novel meta-analysis framework to combine dependent tests under a general setting, and utilize it to synthesize various microbiome association tests that are calculated from the same dataset. Our development builds upon the classical meta-analysis methods of aggregating P-values and also a more recent general method of combining confidence distributions, but makes generalizations to handle dependent tests. The proposed framework ensures rigorous statistical guarantees, and we provide a comprehensive study and compare it with various existing dependent combination methods. Notably, we demonstrate that the widely used Cauchy combination method for dependent tests, referred to as the vanilla Cauchy combination in this article, can be viewed as a special case within our framework. Moreover, the proposed framework provides a way to address the problem when the distributional assumptions underlying the vanilla Cauchy combination are violated. Our numerical results demonstrate that ignoring the dependence among the to-be-combined components may lead to a severe size distortion phenomenon. Compared to the existing P-value combination methods, including the vanilla Cauchy combination method and other methods, the proposed combination framework is flexible and can be adapted to handle the dependence accurately and utilizes the information efficiently to construct tests with accurate size and enhanced power. The development is applied to the microbiome association studies, where we aggregate information from multiple existing tests using the same dataset. The combined tests harness the strengths of each individual test across a wide range of alternative spaces, enabling more efficient and meaningful discoveries of vital microbiome associations.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783248/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种新的元分析框架来组合一般设置下的相关测试,并利用它来合成从同一数据集计算的各种微生物组关联测试。我们的开发建立在经典的聚合p值的元分析方法和最近的结合置信度分布的一般方法的基础上,但对处理相关测试进行了一般化。提出的框架保证了严格的统计保证,并与现有的各种依赖组合方法进行了全面的研究和比较。值得注意的是,我们证明了广泛用于相关测试的柯西组合方法,在本文中被称为香草柯西组合,可以被视为我们框架中的一个特殊情况。此外,所提出的框架提供了一种方法来解决当香草柯西组合背后的分布假设被违反时的问题。数值结果表明,忽略待组合构件之间的依赖关系可能会导致严重的尺寸畸变现象。与现有的p值组合方法(包括香草柯西组合方法和其他方法)相比,本文提出的组合框架具有灵活性,可以准确地处理相关性,并有效地利用信息构建精确尺寸和增强功率的测试。该开发应用于微生物组关联研究,其中我们使用相同的数据集从多个现有测试中汇总信息。综合测试在广泛的替代空间中利用每个单独测试的优势,能够更有效和有意义地发现重要的微生物组关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified combination framework for dependent tests with applications to microbiome association studies.

We introduce a novel meta-analysis framework to combine dependent tests under a general setting, and utilize it to synthesize various microbiome association tests that are calculated from the same dataset. Our development builds upon the classical meta-analysis methods of aggregating P-values and also a more recent general method of combining confidence distributions, but makes generalizations to handle dependent tests. The proposed framework ensures rigorous statistical guarantees, and we provide a comprehensive study and compare it with various existing dependent combination methods. Notably, we demonstrate that the widely used Cauchy combination method for dependent tests, referred to as the vanilla Cauchy combination in this article, can be viewed as a special case within our framework. Moreover, the proposed framework provides a way to address the problem when the distributional assumptions underlying the vanilla Cauchy combination are violated. Our numerical results demonstrate that ignoring the dependence among the to-be-combined components may lead to a severe size distortion phenomenon. Compared to the existing P-value combination methods, including the vanilla Cauchy combination method and other methods, the proposed combination framework is flexible and can be adapted to handle the dependence accurately and utilizes the information efficiently to construct tests with accurate size and enhanced power. The development is applied to the microbiome association studies, where we aggregate information from multiple existing tests using the same dataset. The combined tests harness the strengths of each individual test across a wide range of alternative spaces, enabling more efficient and meaningful discoveries of vital microbiome associations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信