高海拔地区生长的鹿鼠肾上腺嗜铬细胞的儿茶酚胺合成和分泌减少。

IF 2.2 3区 医学 Q3 PHYSIOLOGY
Nicole A Pranckevicius, Angela L Scott, Aedan J Rourke, Ranim Saleem, Oliver H Wearing, Graham R Scott
{"title":"高海拔地区生长的鹿鼠肾上腺嗜铬细胞的儿茶酚胺合成和分泌减少。","authors":"Nicole A Pranckevicius, Angela L Scott, Aedan J Rourke, Ranim Saleem, Oliver H Wearing, Graham R Scott","doi":"10.1152/ajpregu.00194.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia at high altitude can constrain aerobic metabolism and elicit physiological responses that are detrimental to health and fitness. Responses of the sympathoadrenal system are vital for coping with acute hypoxia but can become maladaptive with prolonged activation in chronic hypoxia. We examined how adrenal function is altered in high-altitude populations of deer mice (<i>Peromyscus maniculatus</i>), which have evolved to overcome chronic hypoxia in their native environment. High- and low-altitude populations were each born and raised in common laboratory conditions and then acclimated to normoxia or chronic hypoxia during adulthood. High-altitude mice exhibited lower plasma epinephrine concentrations than low-altitude mice in both normoxia and hypoxia. Primary cultures of chromaffin cells were used to examine the cellular mechanisms underlying differences in epinephrine secretion from the adrenal medulla. Chromaffin cells from high-altitude mice did not mount a diminished Ca<sup>2+</sup> response to nicotinic stimulation, but cellular catecholamine stores were much lower in high-altitude mice than in low-altitude mice. Histological analyses of the adrenal gland showed that high-altitude mice did not have smaller adrenal medullae. Therefore, reductions in chromaffin cell catecholamine stores were the primary mechanism for lower secretion rates and circulating concentrations of catecholamines in high-altitude mice, which may help avoid sympathoadrenal overactivity in chronic hypoxia. Further exploratory analysis found that high-altitude mice have a larger adrenal cortex and higher plasma concentrations of corticosterone, which could reflect changes in stress responsiveness or metabolic regulation. Therefore, multiple evolved changes in the physiology of the adrenal gland may contribute to high-altitude adaptation in deer mice.<b>NEW & NOTEWORTHY</b> Prolonged activation of the sympathoadrenal system can become maladaptive in chronic hypoxia, but few previous studies have examined adrenal function in high-altitude natives. Comparing high-altitude versus low-altitude populations of mice, we show that high-altitude mice synthesize and store fewer catecholamines in adrenal chromaffin cells and thus have lower secretion rates and circulating concentrations of catecholamines in hypoxia.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R274-R286"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catecholamine synthesis and secretion by adrenal chromaffin cells are reduced in deer mice native to high altitude.\",\"authors\":\"Nicole A Pranckevicius, Angela L Scott, Aedan J Rourke, Ranim Saleem, Oliver H Wearing, Graham R Scott\",\"doi\":\"10.1152/ajpregu.00194.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxia at high altitude can constrain aerobic metabolism and elicit physiological responses that are detrimental to health and fitness. Responses of the sympathoadrenal system are vital for coping with acute hypoxia but can become maladaptive with prolonged activation in chronic hypoxia. We examined how adrenal function is altered in high-altitude populations of deer mice (<i>Peromyscus maniculatus</i>), which have evolved to overcome chronic hypoxia in their native environment. High- and low-altitude populations were each born and raised in common laboratory conditions and then acclimated to normoxia or chronic hypoxia during adulthood. High-altitude mice exhibited lower plasma epinephrine concentrations than low-altitude mice in both normoxia and hypoxia. Primary cultures of chromaffin cells were used to examine the cellular mechanisms underlying differences in epinephrine secretion from the adrenal medulla. Chromaffin cells from high-altitude mice did not mount a diminished Ca<sup>2+</sup> response to nicotinic stimulation, but cellular catecholamine stores were much lower in high-altitude mice than in low-altitude mice. Histological analyses of the adrenal gland showed that high-altitude mice did not have smaller adrenal medullae. Therefore, reductions in chromaffin cell catecholamine stores were the primary mechanism for lower secretion rates and circulating concentrations of catecholamines in high-altitude mice, which may help avoid sympathoadrenal overactivity in chronic hypoxia. Further exploratory analysis found that high-altitude mice have a larger adrenal cortex and higher plasma concentrations of corticosterone, which could reflect changes in stress responsiveness or metabolic regulation. Therefore, multiple evolved changes in the physiology of the adrenal gland may contribute to high-altitude adaptation in deer mice.<b>NEW & NOTEWORTHY</b> Prolonged activation of the sympathoadrenal system can become maladaptive in chronic hypoxia, but few previous studies have examined adrenal function in high-altitude natives. Comparing high-altitude versus low-altitude populations of mice, we show that high-altitude mice synthesize and store fewer catecholamines in adrenal chromaffin cells and thus have lower secretion rates and circulating concentrations of catecholamines in hypoxia.</p>\",\"PeriodicalId\":7630,\"journal\":{\"name\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"volume\":\" \",\"pages\":\"R274-R286\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpregu.00194.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00194.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高海拔缺氧会抑制有氧代谢,引发不利于健康和健身的生理反应。交感肾上腺系统的反应对于应对急性缺氧是至关重要的,但在慢性缺氧中,随着长时间的激活,可能会变得不适应。我们研究了高海拔地区鹿鼠(Peromyscus maniculatus)的肾上腺功能是如何改变的,这些鹿鼠已经进化到能够克服自然环境中的慢性缺氧。高海拔和低海拔的种群都是在共同的实验室条件下出生和长大的,然后在成年期适应常氧或慢性缺氧。高海拔小鼠在常氧和缺氧条件下的血浆肾上腺素浓度均低于低海拔小鼠。染色质细胞的原代培养用于检查肾上腺髓质分泌肾上腺素差异的细胞机制。高海拔小鼠的染色质细胞对尼古丁刺激并没有产生减少的Ca2+反应,但高海拔小鼠的细胞儿茶酚胺储存比低海拔小鼠低得多。肾上腺的组织学分析表明,高原小鼠的肾上腺髓质没有变小。因此,嗜铬细胞儿茶酚胺储存的减少是高海拔小鼠儿茶酚胺分泌率和循环浓度降低的主要机制,这可能有助于避免慢性缺氧时交感肾上腺过度活动。进一步的探索性分析发现,高海拔小鼠肾上腺皮质更大,血浆皮质酮浓度更高,这可能反映了应激反应或代谢调节的变化。因此,肾上腺生理的多种进化变化可能有助于鹿小鼠的高海拔适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catecholamine synthesis and secretion by adrenal chromaffin cells are reduced in deer mice native to high altitude.

Hypoxia at high altitude can constrain aerobic metabolism and elicit physiological responses that are detrimental to health and fitness. Responses of the sympathoadrenal system are vital for coping with acute hypoxia but can become maladaptive with prolonged activation in chronic hypoxia. We examined how adrenal function is altered in high-altitude populations of deer mice (Peromyscus maniculatus), which have evolved to overcome chronic hypoxia in their native environment. High- and low-altitude populations were each born and raised in common laboratory conditions and then acclimated to normoxia or chronic hypoxia during adulthood. High-altitude mice exhibited lower plasma epinephrine concentrations than low-altitude mice in both normoxia and hypoxia. Primary cultures of chromaffin cells were used to examine the cellular mechanisms underlying differences in epinephrine secretion from the adrenal medulla. Chromaffin cells from high-altitude mice did not mount a diminished Ca2+ response to nicotinic stimulation, but cellular catecholamine stores were much lower in high-altitude mice than in low-altitude mice. Histological analyses of the adrenal gland showed that high-altitude mice did not have smaller adrenal medullae. Therefore, reductions in chromaffin cell catecholamine stores were the primary mechanism for lower secretion rates and circulating concentrations of catecholamines in high-altitude mice, which may help avoid sympathoadrenal overactivity in chronic hypoxia. Further exploratory analysis found that high-altitude mice have a larger adrenal cortex and higher plasma concentrations of corticosterone, which could reflect changes in stress responsiveness or metabolic regulation. Therefore, multiple evolved changes in the physiology of the adrenal gland may contribute to high-altitude adaptation in deer mice.NEW & NOTEWORTHY Prolonged activation of the sympathoadrenal system can become maladaptive in chronic hypoxia, but few previous studies have examined adrenal function in high-altitude natives. Comparing high-altitude versus low-altitude populations of mice, we show that high-altitude mice synthesize and store fewer catecholamines in adrenal chromaffin cells and thus have lower secretion rates and circulating concentrations of catecholamines in hypoxia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
3.60%
发文量
145
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信