使用Hadamard编码对组氨酸、精氨酸和赖氨酸进行固态核磁共振光谱编辑。

IF 1.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tata Gopinath, Alyssa Kraft, Kyungsoo Shin, Nicholas A. Wood, Francesca M. Marassi
{"title":"使用Hadamard编码对组氨酸、精氨酸和赖氨酸进行固态核磁共振光谱编辑。","authors":"Tata Gopinath,&nbsp;Alyssa Kraft,&nbsp;Kyungsoo Shin,&nbsp;Nicholas A. Wood,&nbsp;Francesca M. Marassi","doi":"10.1007/s10858-024-00455-6","DOIUrl":null,"url":null,"abstract":"<div><p>The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the <sup>15</sup>N spectral frequency dimension. All multi-dimensional <sup>15</sup>N-edited solid-state NMR experiments can be acquired using this strategy, thereby accelerating the acquisition of spectra spanning broad frequency bandwidth. Application of these methods to the ferritin nanocage, reveals signals from N atoms from His, Arg, Lys and Trp sidechains, as well as their tightly bound, ordered water molecules. The Hadamard approach adds to the arsenal of spectroscopic approaches for protein NMR signal detection.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"79 1","pages":"35 - 45"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-024-00455-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Solid state NMR spectral editing of histidine, arginine and lysine using Hadamard encoding\",\"authors\":\"Tata Gopinath,&nbsp;Alyssa Kraft,&nbsp;Kyungsoo Shin,&nbsp;Nicholas A. Wood,&nbsp;Francesca M. Marassi\",\"doi\":\"10.1007/s10858-024-00455-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the <sup>15</sup>N spectral frequency dimension. All multi-dimensional <sup>15</sup>N-edited solid-state NMR experiments can be acquired using this strategy, thereby accelerating the acquisition of spectra spanning broad frequency bandwidth. Application of these methods to the ferritin nanocage, reveals signals from N atoms from His, Arg, Lys and Trp sidechains, as well as their tightly bound, ordered water molecules. The Hadamard approach adds to the arsenal of spectroscopic approaches for protein NMR signal detection.</p></div>\",\"PeriodicalId\":613,\"journal\":{\"name\":\"Journal of Biomolecular NMR\",\"volume\":\"79 1\",\"pages\":\"35 - 45\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10858-024-00455-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular NMR\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10858-024-00455-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-024-00455-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质侧链的核磁共振信号含有丰富的分子内和分子间相互作用的信息,但由于光谱重叠以及构象和氢交换,它们的检测可能会很复杂。在这项工作中,我们展示了一种基于Hadamard矩阵编码的基本侧链信号的多维固态核磁共振谱编辑协议。Hadamard方法获得多维实验,使得主干和欠采样侧链信号都可以在15N频谱频率维度上解码,进行明确的编辑。使用该策略可以获得所有多维15n编辑固体核磁共振实验,从而加速了跨宽频率带宽的光谱获取。将这些方法应用于铁蛋白纳米笼,揭示了来自His, Arg, Lys和Trp侧链的N原子信号,以及它们紧密结合的有序水分子。Hadamard方法增加了用于蛋白质核磁共振信号检测的光谱方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solid state NMR spectral editing of histidine, arginine and lysine using Hadamard encoding

The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the 15N spectral frequency dimension. All multi-dimensional 15N-edited solid-state NMR experiments can be acquired using this strategy, thereby accelerating the acquisition of spectra spanning broad frequency bandwidth. Application of these methods to the ferritin nanocage, reveals signals from N atoms from His, Arg, Lys and Trp sidechains, as well as their tightly bound, ordered water molecules. The Hadamard approach adds to the arsenal of spectroscopic approaches for protein NMR signal detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular NMR
Journal of Biomolecular NMR 生物-光谱学
CiteScore
6.00
自引率
3.70%
发文量
19
审稿时长
6-12 weeks
期刊介绍: The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include: Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR. New NMR techniques for studies of biological macromolecules. Novel approaches to computer-aided automated analysis of multidimensional NMR spectra. Computational methods for the structural interpretation of NMR data, including structure refinement. Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals. New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信