基因书写者DNMT1和RNA编辑器ADAR1对高尿酸血症和痛风的表观遗传控制:唐氏综合征痛风和淀粉样蛋白溶解的机制。

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Suresh C Tyagi, Irina Smolenkova, Yuting Zheng, Mahavir Singh
{"title":"基因书写者DNMT1和RNA编辑器ADAR1对高尿酸血症和痛风的表观遗传控制:唐氏综合征痛风和淀粉样蛋白溶解的机制。","authors":"Suresh C Tyagi, Irina Smolenkova, Yuting Zheng, Mahavir Singh","doi":"10.1007/s10528-025-11038-x","DOIUrl":null,"url":null,"abstract":"<p><p>Although DNA methyltransferase 1 (DNMT1) and RNA editor ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid. We hypothesized that targeting epigenetic regulators and RNA editor, and inhibiting Hcy and adenosine, could alleviate DS phenotype including the congenital heart disease (CHD). DS and wild-type mice were treated with epigallocatechin gallate (EG), inhibitor of Hcy, and adenosine. Specific substrate gel zymography identified matrix metalloproteinases (MMPs)/A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) activities and MMP12/ADAMTS12 and MMP13/ADAMTS13 levels were assessed via gel zymography. Cardiac levels of DNMT1, ADAR, tissue inhibitor of metalloproteinase 1 (TIMP1), SAHH, and ten-eleven translocator (TET2), along with hydroxymethylation (a gene eraser), were measured. Calcium urate deposits in heart tissue suggested gout mechanism in DS. Robust amyloid fibers in DS mouse brain cortex were most likely dissolved by ADAMTS as its levels were elevated in tissues, with a corresponding decrease in TIMP1 in the EG group. It appears that triplication of down syndrome cell adhesion molecule (DSCAM) and cell adhesion molecule 1 (CAM1) fragment also help dissolve amyloid fibers, thus suggesting ADAMTS13/TIMP1 ratio could predict plaque dissolution. Our results indicate that cystathionine-β synthase (CBS) inhibitor as a potential therapy for amyloid dissolution.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenetic Control of Hyperuricemia and Gout by Gene Writer DNMT1 and RNA Editor ADAR1: Mechanism of Gout and Amyloid Dissolution in Down Syndrome.\",\"authors\":\"Suresh C Tyagi, Irina Smolenkova, Yuting Zheng, Mahavir Singh\",\"doi\":\"10.1007/s10528-025-11038-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although DNA methyltransferase 1 (DNMT1) and RNA editor ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid. We hypothesized that targeting epigenetic regulators and RNA editor, and inhibiting Hcy and adenosine, could alleviate DS phenotype including the congenital heart disease (CHD). DS and wild-type mice were treated with epigallocatechin gallate (EG), inhibitor of Hcy, and adenosine. Specific substrate gel zymography identified matrix metalloproteinases (MMPs)/A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) activities and MMP12/ADAMTS12 and MMP13/ADAMTS13 levels were assessed via gel zymography. Cardiac levels of DNMT1, ADAR, tissue inhibitor of metalloproteinase 1 (TIMP1), SAHH, and ten-eleven translocator (TET2), along with hydroxymethylation (a gene eraser), were measured. Calcium urate deposits in heart tissue suggested gout mechanism in DS. Robust amyloid fibers in DS mouse brain cortex were most likely dissolved by ADAMTS as its levels were elevated in tissues, with a corresponding decrease in TIMP1 in the EG group. It appears that triplication of down syndrome cell adhesion molecule (DSCAM) and cell adhesion molecule 1 (CAM1) fragment also help dissolve amyloid fibers, thus suggesting ADAMTS13/TIMP1 ratio could predict plaque dissolution. Our results indicate that cystathionine-β synthase (CBS) inhibitor as a potential therapy for amyloid dissolution.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-025-11038-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11038-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然DNA甲基转移酶1 (DNMT1)和RNA编辑器ADAR在唐氏综合症(DS)中存在三联体,但它们的具体作用尚不清楚。DNMT甲基化DNA,产生s -腺苷同型半胱氨酸(SAH),随后通过s -腺苷同型半胱氨酸(Hcy)水解酶(SAHH)转化为同型半胱氨酸(Hcy)和腺苷。ADAR将腺苷转化为肌苷和尿酸。我们假设靶向表观遗传调控因子和RNA编辑器,抑制Hcy和腺苷,可以减轻包括先天性心脏病(CHD)在内的DS表型。用表没食子儿茶素没食子酸酯(EG)、Hcy抑制剂和腺苷治疗DS和野生型小鼠。特异性底物凝胶酶谱法鉴定基质金属蛋白酶(MMPs)/A崩解素和血小板反应蛋白基元金属蛋白酶(ADAMTS)活性,并通过凝胶酶谱法评估MMP12/ADAMTS12和MMP13/ADAMTS13水平。测量心脏DNMT1、ADAR、金属蛋白酶1组织抑制剂(TIMP1)、SAHH和10 - 11易位子(TET2)水平,以及羟甲基化(一种基因擦除剂)水平。心脏组织尿酸钙沉积提示DS的痛风机制。由于ADAMTS在组织中的水平升高,DS小鼠大脑皮层中坚固的淀粉样蛋白纤维最有可能被ADAMTS溶解,而EG组的TIMP1相应降低。唐氏综合征细胞粘附分子(DSCAM)和细胞粘附分子1 (CAM1)片段的三倍复制似乎也有助于淀粉样蛋白纤维的溶解,因此表明ADAMTS13/TIMP1比值可以预测斑块的溶解。我们的研究结果表明,胱硫氨酸-β合成酶(CBS)抑制剂是一种潜在的治疗淀粉样蛋白溶解的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epigenetic Control of Hyperuricemia and Gout by Gene Writer DNMT1 and RNA Editor ADAR1: Mechanism of Gout and Amyloid Dissolution in Down Syndrome.

Although DNA methyltransferase 1 (DNMT1) and RNA editor ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid. We hypothesized that targeting epigenetic regulators and RNA editor, and inhibiting Hcy and adenosine, could alleviate DS phenotype including the congenital heart disease (CHD). DS and wild-type mice were treated with epigallocatechin gallate (EG), inhibitor of Hcy, and adenosine. Specific substrate gel zymography identified matrix metalloproteinases (MMPs)/A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) activities and MMP12/ADAMTS12 and MMP13/ADAMTS13 levels were assessed via gel zymography. Cardiac levels of DNMT1, ADAR, tissue inhibitor of metalloproteinase 1 (TIMP1), SAHH, and ten-eleven translocator (TET2), along with hydroxymethylation (a gene eraser), were measured. Calcium urate deposits in heart tissue suggested gout mechanism in DS. Robust amyloid fibers in DS mouse brain cortex were most likely dissolved by ADAMTS as its levels were elevated in tissues, with a corresponding decrease in TIMP1 in the EG group. It appears that triplication of down syndrome cell adhesion molecule (DSCAM) and cell adhesion molecule 1 (CAM1) fragment also help dissolve amyloid fibers, thus suggesting ADAMTS13/TIMP1 ratio could predict plaque dissolution. Our results indicate that cystathionine-β synthase (CBS) inhibitor as a potential therapy for amyloid dissolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信