{"title":"更正“全基因组种群亲缘关系和水蚤类、水蚤类和亚洲野生驴的适应特征”。","authors":"","doi":"10.1111/mec.17674","DOIUrl":null,"url":null,"abstract":"<p>Pan, J., Liu, X., Baca, M., Calvière-Tonasso, L., Schiavinato, S., Chauvey, L., Tressières, G., Perdereau, A., Aury, J.-M., Oliveira, P. H., Wincker, P., Abdykanova, A., Arsuaga, J. L., Bayarsaikhan, J., Belinskiy, A. B., Carbonell, E., Davoudi, H., Lira Garrido, J., Gilbert, A. S., … Orlando, L. (2024). Genome-wide population affinities and signatures of adaptation in hydruntines, sussemiones and Asian wild asses. <i>Molecular Ecology</i>, <i>33</i>, e17527. https://doi.org/10.1111/mec.17527.</p><p>In our study, we made use some of previously published genome sequences of <i>Equus</i> samples. Although we refered to the original work in Supplementary Table 1 by indicating the surname of the leading author followed by ‘et al.’ and the year of publication, we inadvertently failed to report the corresponding articles in the final reference list appearing in the main text. These references are listed below, sorted by alphabetic order:</p><p>Bennett et al. (2022): Bennett E. A., J. Weber, W. Bendhafer, et al. 2022. \"The Genetic Identity of the Earliest Human-Made Hybrid Animals, The Kungas of Syro-Mesopotamia\". <i>Science Advances</i> 8, no. 2: eabm0218. https://doi.org/10.1126/sciadv.abm0218. https://www.science.org/doi/full/10.1126/sciadv.abm0218.</p><p>Dong et al. (2022): Dong H., Z. Dong, F. Wang, et al. 2022. \"Whole Genome Sequencing Provides New Insights Into the Genetic Diversity and Coat Color of Asiatic Wild Ass and Its Hybrids\". <i>Frontiers in Genetics</i> 13: 818420. https://doi.org/10.3389/fgene.2022.818420/full. https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.818420/full.</p><p>Han et al. (2022): Han H., B. A. McGivney, L. Allen, et al. 2022. \"Common Protein-Coding Variants Influence the Racing Phenotype in Galloping Racehorse Breeds\". <i>Communications Biology</i> 5, no. 1: 1320. https://doi.org/10.1038/s42003-022-04206-x. https://www.nature.com/articles/s42003-022-04206-x.</p><p>Huang et al. (2015). Huang J., Y. Zhao, D. Bai, et al. 2015. \"Donkey Genome and Insight Into the Imprinting of Fast Karyotype Evolution\". <i>Scientific Reports</i> 5, no. 1: 14106. https://doi.org/10.1038/srep14106. https://www.nature.com/articles/srep14106.</p><p>Librado et al. (2015): Librado P., C. Der Sarkissian, L. Ermini, et al. 2015. \"Tracking the Origins of Yakutian Horses and the Genetic Basis for Their Fast Adaptation to Subarctic Environments\". <i>Proceedings of the National Academy of Sciences of the United States of America</i> 112, no. 50: E6889–E6897. https://doi.org/10.1073/pnas.1513696112. https://www.pnas.org/doi/10.1073/pnas.1513696112.</p><p>Wang et al. (2020): Wang C., H. Li, Y. Guo, et al. 2020. \"Donkey Genomes Provide New Insights Into Domestication and Selection for Coat Color\". <i>Nature Communications</i> 11, no. 1: 6014. https://doi.org/10.1038/s41467-020-19813-7. https://www.nature.com/articles/s41467-020-19813-7.</p><p>Yuan et al. (2019): Yuan J. X., X. D. Hou, A. Barlow, et al. 2019, \"Molecular Identification of Late and Terminal Pleistocene <i>Equus ovodovi</i> From Northeastern China\". <i>PLoS One</i> 14, no. 5: e0216883. https://doi.org/10.1371/journal.pone.0216883. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216883.</p><p>Additionally, the citation to ‘Özkan et al., 2023’ in Supplementary Table1 should be corrected to ‘Özkan et al., 2024’. Finally, we note that Bennett et al. (2022) not only reported the first ancient genome sequences of <i>E. hemionus</i>, but also that the genome sequences of Tibetan kiangs and Mongolian khulans are closely related.</p><p>We apologize for this error.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 5","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17674","citationCount":"0","resultStr":"{\"title\":\"Correction to “Genome-wide population affinities and signatures of adaptation in hydruntines, sussemiones and Asian wild asses”\",\"authors\":\"\",\"doi\":\"10.1111/mec.17674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pan, J., Liu, X., Baca, M., Calvière-Tonasso, L., Schiavinato, S., Chauvey, L., Tressières, G., Perdereau, A., Aury, J.-M., Oliveira, P. H., Wincker, P., Abdykanova, A., Arsuaga, J. L., Bayarsaikhan, J., Belinskiy, A. B., Carbonell, E., Davoudi, H., Lira Garrido, J., Gilbert, A. S., … Orlando, L. (2024). Genome-wide population affinities and signatures of adaptation in hydruntines, sussemiones and Asian wild asses. <i>Molecular Ecology</i>, <i>33</i>, e17527. https://doi.org/10.1111/mec.17527.</p><p>In our study, we made use some of previously published genome sequences of <i>Equus</i> samples. Although we refered to the original work in Supplementary Table 1 by indicating the surname of the leading author followed by ‘et al.’ and the year of publication, we inadvertently failed to report the corresponding articles in the final reference list appearing in the main text. These references are listed below, sorted by alphabetic order:</p><p>Bennett et al. (2022): Bennett E. A., J. Weber, W. Bendhafer, et al. 2022. \\\"The Genetic Identity of the Earliest Human-Made Hybrid Animals, The Kungas of Syro-Mesopotamia\\\". <i>Science Advances</i> 8, no. 2: eabm0218. https://doi.org/10.1126/sciadv.abm0218. https://www.science.org/doi/full/10.1126/sciadv.abm0218.</p><p>Dong et al. (2022): Dong H., Z. Dong, F. Wang, et al. 2022. \\\"Whole Genome Sequencing Provides New Insights Into the Genetic Diversity and Coat Color of Asiatic Wild Ass and Its Hybrids\\\". <i>Frontiers in Genetics</i> 13: 818420. https://doi.org/10.3389/fgene.2022.818420/full. https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.818420/full.</p><p>Han et al. (2022): Han H., B. A. McGivney, L. Allen, et al. 2022. \\\"Common Protein-Coding Variants Influence the Racing Phenotype in Galloping Racehorse Breeds\\\". <i>Communications Biology</i> 5, no. 1: 1320. https://doi.org/10.1038/s42003-022-04206-x. https://www.nature.com/articles/s42003-022-04206-x.</p><p>Huang et al. (2015). Huang J., Y. Zhao, D. Bai, et al. 2015. \\\"Donkey Genome and Insight Into the Imprinting of Fast Karyotype Evolution\\\". <i>Scientific Reports</i> 5, no. 1: 14106. https://doi.org/10.1038/srep14106. https://www.nature.com/articles/srep14106.</p><p>Librado et al. (2015): Librado P., C. Der Sarkissian, L. Ermini, et al. 2015. \\\"Tracking the Origins of Yakutian Horses and the Genetic Basis for Their Fast Adaptation to Subarctic Environments\\\". <i>Proceedings of the National Academy of Sciences of the United States of America</i> 112, no. 50: E6889–E6897. https://doi.org/10.1073/pnas.1513696112. https://www.pnas.org/doi/10.1073/pnas.1513696112.</p><p>Wang et al. (2020): Wang C., H. Li, Y. Guo, et al. 2020. \\\"Donkey Genomes Provide New Insights Into Domestication and Selection for Coat Color\\\". <i>Nature Communications</i> 11, no. 1: 6014. https://doi.org/10.1038/s41467-020-19813-7. https://www.nature.com/articles/s41467-020-19813-7.</p><p>Yuan et al. (2019): Yuan J. X., X. D. Hou, A. Barlow, et al. 2019, \\\"Molecular Identification of Late and Terminal Pleistocene <i>Equus ovodovi</i> From Northeastern China\\\". <i>PLoS One</i> 14, no. 5: e0216883. https://doi.org/10.1371/journal.pone.0216883. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216883.</p><p>Additionally, the citation to ‘Özkan et al., 2023’ in Supplementary Table1 should be corrected to ‘Özkan et al., 2024’. Finally, we note that Bennett et al. (2022) not only reported the first ancient genome sequences of <i>E. hemionus</i>, but also that the genome sequences of Tibetan kiangs and Mongolian khulans are closely related.</p><p>We apologize for this error.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\"34 5\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17674\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mec.17674\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17674","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
Pan, J., Liu, X., Baca, M., calvi - tonasso, L., Schiavinato, S., Chauvey, L., tresi, G., Perdereau, A., auury, J.-M.。, Oliveira, p.h., winker, p.p., Abdykanova, A., Arsuaga, j.l., Bayarsaikhan, J., Belinskiy, a.b., Carbonell, E., Davoudi, H., Lira Garrido, J., Gilbert, a.s.,…Orlando, L.(2024)。全基因组种群亲和性及亚洲野驴的适应特征。分子生态学杂志,33(1):527 - 527。https://doi.org/10.1111/mec.17527.In在我们的研究中,我们使用了一些以前发表的马样本的基因组序列。虽然我们在补充表1中注明了主要作者的姓氏,然后加上“et al.”和出版年份,但我们无意中没有在正文中出现的最终参考文献列表中报告相应的文章。这些参考文献按字母顺序列出如下:Bennett et al. (2022): Bennett E. A, J. Weber, W. Bendhafer, et . 2022。“最早的人类制造的杂交动物的遗传特性,syo - mesopotamia的Kungas”。《科学进展》第8期,no。2: eabm0218。https://doi.org/10.1126/sciadv.abm0218。https://www.science.org/doi/full/10.1126/sciadv.abm0218.Dong等(2022):董辉,董振东,王峰等。2022。“全基因组测序为亚洲野驴及其杂交种的遗传多样性和毛色提供了新的见解”。遗传学报13:818420。https://doi.org/10.3389/fgene.2022.818420/full。https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.818420/full.Han等(2022):Han H., b.a. McGivney, L. Allen等。2022。“常见的蛋白质编码变异影响赛马品种的比赛表型”。通讯生物学第5期1: 1320。https://doi.org/10.1038/s42003 - 022 - 04206 - x。https://www.nature.com/articles/s42003-022-04206-x.Huang et al.(2015)。赵黄J。,y, d .呗,等。2015。“驴基因组和对快速核型进化印迹的洞察”。《科学报告》第5期。1: 14106。https://doi.org/10.1038/srep14106。https://www.nature.com/articles/srep14106.Librado等(2015):Librado P., C. Der Sarkissian, L. Ermini等。2015。“追踪雅库特马的起源及其快速适应亚北极环境的遗传基础”。《美国国家科学院院刊》112,第2期。50: E6889-E6897。https://doi.org/10.1073/pnas.1513696112。https://www.pnas.org/doi/10.1073/pnas.1513696112.Wang等(2020):王超,李华,郭毅等。2020。“驴基因组为驯化和毛色选择提供了新的见解”。《自然通讯》第11期。1: 6014。https://doi.org/10.1038/s41467 - 020 - 19813 - 7。https://www.nature.com/articles/s41467-020-19813-7.Yuan等(2019):袁建新,侯晓东,A. Barlow等。2019,“中国东北晚更新世和末更新世奥氏马的分子鉴定”。PLoS One,第14期。5: e0216883。https://doi.org/10.1371/journal.pone.0216883。https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216883.Additionally,补充表1中对“Özkan et al., 2023”的引用应更正为“Özkan et al., 2024”。最后,我们注意到Bennett et al.(2022)不仅首次报道了E. hemionus的古代基因组序列,而且还报道了西藏羌人与蒙古khulans的基因组序列密切相关。我们为这个错误道歉。
Correction to “Genome-wide population affinities and signatures of adaptation in hydruntines, sussemiones and Asian wild asses”
Pan, J., Liu, X., Baca, M., Calvière-Tonasso, L., Schiavinato, S., Chauvey, L., Tressières, G., Perdereau, A., Aury, J.-M., Oliveira, P. H., Wincker, P., Abdykanova, A., Arsuaga, J. L., Bayarsaikhan, J., Belinskiy, A. B., Carbonell, E., Davoudi, H., Lira Garrido, J., Gilbert, A. S., … Orlando, L. (2024). Genome-wide population affinities and signatures of adaptation in hydruntines, sussemiones and Asian wild asses. Molecular Ecology, 33, e17527. https://doi.org/10.1111/mec.17527.
In our study, we made use some of previously published genome sequences of Equus samples. Although we refered to the original work in Supplementary Table 1 by indicating the surname of the leading author followed by ‘et al.’ and the year of publication, we inadvertently failed to report the corresponding articles in the final reference list appearing in the main text. These references are listed below, sorted by alphabetic order:
Bennett et al. (2022): Bennett E. A., J. Weber, W. Bendhafer, et al. 2022. "The Genetic Identity of the Earliest Human-Made Hybrid Animals, The Kungas of Syro-Mesopotamia". Science Advances 8, no. 2: eabm0218. https://doi.org/10.1126/sciadv.abm0218. https://www.science.org/doi/full/10.1126/sciadv.abm0218.
Dong et al. (2022): Dong H., Z. Dong, F. Wang, et al. 2022. "Whole Genome Sequencing Provides New Insights Into the Genetic Diversity and Coat Color of Asiatic Wild Ass and Its Hybrids". Frontiers in Genetics 13: 818420. https://doi.org/10.3389/fgene.2022.818420/full. https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.818420/full.
Han et al. (2022): Han H., B. A. McGivney, L. Allen, et al. 2022. "Common Protein-Coding Variants Influence the Racing Phenotype in Galloping Racehorse Breeds". Communications Biology 5, no. 1: 1320. https://doi.org/10.1038/s42003-022-04206-x. https://www.nature.com/articles/s42003-022-04206-x.
Huang et al. (2015). Huang J., Y. Zhao, D. Bai, et al. 2015. "Donkey Genome and Insight Into the Imprinting of Fast Karyotype Evolution". Scientific Reports 5, no. 1: 14106. https://doi.org/10.1038/srep14106. https://www.nature.com/articles/srep14106.
Librado et al. (2015): Librado P., C. Der Sarkissian, L. Ermini, et al. 2015. "Tracking the Origins of Yakutian Horses and the Genetic Basis for Their Fast Adaptation to Subarctic Environments". Proceedings of the National Academy of Sciences of the United States of America 112, no. 50: E6889–E6897. https://doi.org/10.1073/pnas.1513696112. https://www.pnas.org/doi/10.1073/pnas.1513696112.
Wang et al. (2020): Wang C., H. Li, Y. Guo, et al. 2020. "Donkey Genomes Provide New Insights Into Domestication and Selection for Coat Color". Nature Communications 11, no. 1: 6014. https://doi.org/10.1038/s41467-020-19813-7. https://www.nature.com/articles/s41467-020-19813-7.
Yuan et al. (2019): Yuan J. X., X. D. Hou, A. Barlow, et al. 2019, "Molecular Identification of Late and Terminal Pleistocene Equus ovodovi From Northeastern China". PLoS One 14, no. 5: e0216883. https://doi.org/10.1371/journal.pone.0216883. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216883.
Additionally, the citation to ‘Özkan et al., 2023’ in Supplementary Table1 should be corrected to ‘Özkan et al., 2024’. Finally, we note that Bennett et al. (2022) not only reported the first ancient genome sequences of E. hemionus, but also that the genome sequences of Tibetan kiangs and Mongolian khulans are closely related.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms