{"title":"利用镍二膦配合物的机制引导氧化还原液流电池的双电子储能。","authors":"Md. Musharraf Hossain and Byron H. Farnum","doi":"10.1039/D4CC06547F","DOIUrl":null,"url":null,"abstract":"<p >The storage of multiple electrons per molecule can greatly enhance the energy density of redox-flow batteries (RFBs). Here, we show that nickel bis(diphosphine) complexes efficiently store multiple electrons through either sequential 1e<small><sup>−</sup></small> redox waves or a concerted 2e<small><sup>−</sup></small> redox wave, depending on their coordination environment. Mechanistic studies comparing ligand sterics (–Me <em>vs</em>. –Ph) and coordination of monodentate ligands (MeCN <em>vs.</em> Cl<small><sup>−</sup></small>) allow for selective control of the electron transfer pathway, steering electron storage toward the more favorable 2e<small><sup>−</sup></small> wave. Continuous charge–discharge cycling experiments show more negative charge–discharge potentials and improved capacity retention in the presence of Cl<small><sup>−</sup></small>, thus improving the energy storage of nickel bis(diphosphine) complexes as anolytes in RFBs. This work shows how mechanistic understanding of 2e<small><sup>−</sup></small> redox cycles for transition metal complexes can create new opportunities for multi-electron storage in RFBs.</p>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":" 16","pages":" 3347-3350"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism guided two-electron energy storage for redox-flow batteries using nickel bis(diphosphine) complexes†\",\"authors\":\"Md. Musharraf Hossain and Byron H. Farnum\",\"doi\":\"10.1039/D4CC06547F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The storage of multiple electrons per molecule can greatly enhance the energy density of redox-flow batteries (RFBs). Here, we show that nickel bis(diphosphine) complexes efficiently store multiple electrons through either sequential 1e<small><sup>−</sup></small> redox waves or a concerted 2e<small><sup>−</sup></small> redox wave, depending on their coordination environment. Mechanistic studies comparing ligand sterics (–Me <em>vs</em>. –Ph) and coordination of monodentate ligands (MeCN <em>vs.</em> Cl<small><sup>−</sup></small>) allow for selective control of the electron transfer pathway, steering electron storage toward the more favorable 2e<small><sup>−</sup></small> wave. Continuous charge–discharge cycling experiments show more negative charge–discharge potentials and improved capacity retention in the presence of Cl<small><sup>−</sup></small>, thus improving the energy storage of nickel bis(diphosphine) complexes as anolytes in RFBs. This work shows how mechanistic understanding of 2e<small><sup>−</sup></small> redox cycles for transition metal complexes can create new opportunities for multi-electron storage in RFBs.</p>\",\"PeriodicalId\":67,\"journal\":{\"name\":\"Chemical Communications\",\"volume\":\" 16\",\"pages\":\" 3347-3350\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cc/d4cc06547f\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cc/d4cc06547f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
每个分子中存储多个电子可以大大提高氧化还原液流电池的能量密度。在这里,我们发现镍二膦配合物可以通过顺序的氧化还原波或一致的氧化还原波有效地存储多个电子,这取决于它们的配位环境。比较配体立体构型(- me vs. - ph)和单齿配体配位(MeCN vs. Cl-)的机理研究允许对电子转移途径进行选择性控制,将电子存储转向更有利的2e-波。连续充放电循环实验表明,在Cl-存在下,镍-二膦配合物的负电荷-放电电位增加,容量保持率提高,从而提高了作为阳极电解质的镍-二膦配合物在rfb中的储能能力。这项工作表明,对过渡金属配合物的2e-氧化还原循环的机理理解可以为rfb中的多电子存储创造新的机会。
Mechanism guided two-electron energy storage for redox-flow batteries using nickel bis(diphosphine) complexes†
The storage of multiple electrons per molecule can greatly enhance the energy density of redox-flow batteries (RFBs). Here, we show that nickel bis(diphosphine) complexes efficiently store multiple electrons through either sequential 1e− redox waves or a concerted 2e− redox wave, depending on their coordination environment. Mechanistic studies comparing ligand sterics (–Me vs. –Ph) and coordination of monodentate ligands (MeCN vs. Cl−) allow for selective control of the electron transfer pathway, steering electron storage toward the more favorable 2e− wave. Continuous charge–discharge cycling experiments show more negative charge–discharge potentials and improved capacity retention in the presence of Cl−, thus improving the energy storage of nickel bis(diphosphine) complexes as anolytes in RFBs. This work shows how mechanistic understanding of 2e− redox cycles for transition metal complexes can create new opportunities for multi-electron storage in RFBs.
期刊介绍:
ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.