CS-MPC/CS-ChS NPs水化润滑机理的分子动力学模拟

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Langmuir Pub Date : 2025-02-11 Epub Date: 2025-01-31 DOI:10.1021/acs.langmuir.4c03876
Ximing Cai, Yan Ding, Haofeng Qiu, Dangsheng Xiong
{"title":"CS-MPC/CS-ChS NPs水化润滑机理的分子动力学模拟","authors":"Ximing Cai, Yan Ding, Haofeng Qiu, Dangsheng Xiong","doi":"10.1021/acs.langmuir.4c03876","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) remains a significant clinical challenge, with current treatments like sodium hyaluronate injections offering limited efficacy due to suboptimal lubrication and rapid degradation. In this study, we explored an advanced solution to these issues by investigating the colubrication mechanism of a composite biolubricant consisting of 2-methacryloyloxyethyl phosphorylcholine-modified chitosan (CS-MPC) and chondroitin sulfate-modified chitosan nanoparticles (CS-ChS NPs) using molecular dynamics (MD) simulations. Results show that the composite lubricant outperforms individual CS-MPC or CS-ChS NPs, exhibiting a lower coefficient of friction (COF) and a superior load-bearing capacity. The CS-MPC/CS-ChS NP system maintains a consistent compression ratio of -0.5% under different external pressures and exhibited a low coefficient of friction (COF) of 0.041 across varying shear velocities. The sulfate groups on CS-ChS NPs interact with CS-MPC chains, stabilizing the system through electrostatic interactions and enabling the effective dispersion of normal stress, thereby protecting the substrate surface from wear. This enhanced performance is attributed to the formation of a multilayered hydration shell around the lubricant molecules. The hydration shells provide superior lubrication, contributing to the system's robustness under varying loads. These findings offer critical insights into designing high-performance biolubricants for joint protection, presenting a promising avenue for future OA treatments.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":"3177-3186"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Dynamics Simulation of the Hydration Lubrication Mechanism of CS-MPC/CS-ChS NPs.\",\"authors\":\"Ximing Cai, Yan Ding, Haofeng Qiu, Dangsheng Xiong\",\"doi\":\"10.1021/acs.langmuir.4c03876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis (OA) remains a significant clinical challenge, with current treatments like sodium hyaluronate injections offering limited efficacy due to suboptimal lubrication and rapid degradation. In this study, we explored an advanced solution to these issues by investigating the colubrication mechanism of a composite biolubricant consisting of 2-methacryloyloxyethyl phosphorylcholine-modified chitosan (CS-MPC) and chondroitin sulfate-modified chitosan nanoparticles (CS-ChS NPs) using molecular dynamics (MD) simulations. Results show that the composite lubricant outperforms individual CS-MPC or CS-ChS NPs, exhibiting a lower coefficient of friction (COF) and a superior load-bearing capacity. The CS-MPC/CS-ChS NP system maintains a consistent compression ratio of -0.5% under different external pressures and exhibited a low coefficient of friction (COF) of 0.041 across varying shear velocities. The sulfate groups on CS-ChS NPs interact with CS-MPC chains, stabilizing the system through electrostatic interactions and enabling the effective dispersion of normal stress, thereby protecting the substrate surface from wear. This enhanced performance is attributed to the formation of a multilayered hydration shell around the lubricant molecules. The hydration shells provide superior lubrication, contributing to the system's robustness under varying loads. These findings offer critical insights into designing high-performance biolubricants for joint protection, presenting a promising avenue for future OA treatments.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\" \",\"pages\":\"3177-3186\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03876\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03876","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

骨关节炎(OA)仍然是一个重大的临床挑战,目前的治疗方法,如注射透明质酸钠,由于不理想的润滑和快速降解,疗效有限。在这项研究中,我们通过分子动力学(MD)模拟研究了由2-甲基丙烯酰氧乙基磷胆碱修饰的壳聚糖(CS-MPC)和硫酸软骨素修饰的壳聚糖纳米颗粒(CS-ChS NPs)组成的复合生物润滑剂的润滑机理,探索了解决这些问题的先进方法。结果表明,复合润滑剂的性能优于单个CS-MPC或CS-ChS NPs,具有较低的摩擦系数(COF)和优越的承载能力。在不同的外部压力下,CS-MPC/CS-ChS NP系统保持了-0.5%的压缩比,并且在不同的剪切速度下表现出0.041的低摩擦系数(COF)。CS-ChS NPs上的硫酸盐基团与CS-MPC链相互作用,通过静电相互作用稳定体系,使正应力有效分散,从而保护基体表面免受磨损。这种增强的性能是由于在润滑剂分子周围形成了多层水化壳。水合壳提供卓越的润滑,有助于系统在不同负载下的坚固性。这些发现为设计用于关节保护的高性能生物润滑剂提供了重要见解,为未来OA治疗提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular Dynamics Simulation of the Hydration Lubrication Mechanism of CS-MPC/CS-ChS NPs.

Molecular Dynamics Simulation of the Hydration Lubrication Mechanism of CS-MPC/CS-ChS NPs.

Osteoarthritis (OA) remains a significant clinical challenge, with current treatments like sodium hyaluronate injections offering limited efficacy due to suboptimal lubrication and rapid degradation. In this study, we explored an advanced solution to these issues by investigating the colubrication mechanism of a composite biolubricant consisting of 2-methacryloyloxyethyl phosphorylcholine-modified chitosan (CS-MPC) and chondroitin sulfate-modified chitosan nanoparticles (CS-ChS NPs) using molecular dynamics (MD) simulations. Results show that the composite lubricant outperforms individual CS-MPC or CS-ChS NPs, exhibiting a lower coefficient of friction (COF) and a superior load-bearing capacity. The CS-MPC/CS-ChS NP system maintains a consistent compression ratio of -0.5% under different external pressures and exhibited a low coefficient of friction (COF) of 0.041 across varying shear velocities. The sulfate groups on CS-ChS NPs interact with CS-MPC chains, stabilizing the system through electrostatic interactions and enabling the effective dispersion of normal stress, thereby protecting the substrate surface from wear. This enhanced performance is attributed to the formation of a multilayered hydration shell around the lubricant molecules. The hydration shells provide superior lubrication, contributing to the system's robustness under varying loads. These findings offer critical insights into designing high-performance biolubricants for joint protection, presenting a promising avenue for future OA treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信