Veronika Burger, Maximilian Franta, AnnMarie C O'Donoghue, Armin R Ofial, Ruth M Gschwind, Hendrik Zipse
{"title":"吡啶酰胺离子对:超亲核试剂在极性有机溶剂中的设计原则。","authors":"Veronika Burger, Maximilian Franta, AnnMarie C O'Donoghue, Armin R Ofial, Ruth M Gschwind, Hendrik Zipse","doi":"10.1021/acs.joc.4c02668","DOIUrl":null,"url":null,"abstract":"<p><p>A comprehensive analytical protocol combining conductivity, diffusion-ordered NMR (DOSY), and photometric kinetic measurements is employed to analyze the nucleophilic reactivity of pyridinamide ion pairs in low-polarity organic solvents. The association patterns of these systems are found to strongly depend on cation size, with larger cations favoring the formation of cationic triple ion sandwich complexes together with free and highly nucleophilic anions. Kinetic studies using the ionic strength-controlled benzhydrylium method demonstrate that pyridinamide ions exhibit significantly higher nucleophilicities as compared to established organocatalysts, particularly in low-polarity solvents. Nucleophilicities are furthermore found to correlate well with Brønsted basicities measured in water and with Lewis basicities calculated in dichloromethane. Taken together, these findings provide quantitative guidelines for the future design of highly active Lewis base catalysts.</p>","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":" ","pages":"2298-2306"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833877/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pyridinamide Ion Pairs: Design Principles for Super-Nucleophiles in Apolar Organic Solvents.\",\"authors\":\"Veronika Burger, Maximilian Franta, AnnMarie C O'Donoghue, Armin R Ofial, Ruth M Gschwind, Hendrik Zipse\",\"doi\":\"10.1021/acs.joc.4c02668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A comprehensive analytical protocol combining conductivity, diffusion-ordered NMR (DOSY), and photometric kinetic measurements is employed to analyze the nucleophilic reactivity of pyridinamide ion pairs in low-polarity organic solvents. The association patterns of these systems are found to strongly depend on cation size, with larger cations favoring the formation of cationic triple ion sandwich complexes together with free and highly nucleophilic anions. Kinetic studies using the ionic strength-controlled benzhydrylium method demonstrate that pyridinamide ions exhibit significantly higher nucleophilicities as compared to established organocatalysts, particularly in low-polarity solvents. Nucleophilicities are furthermore found to correlate well with Brønsted basicities measured in water and with Lewis basicities calculated in dichloromethane. Taken together, these findings provide quantitative guidelines for the future design of highly active Lewis base catalysts.</p>\",\"PeriodicalId\":57,\"journal\":{\"name\":\"Journal of Organic Chemistry\",\"volume\":\" \",\"pages\":\"2298-2306\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833877/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.joc.4c02668\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.4c02668","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Pyridinamide Ion Pairs: Design Principles for Super-Nucleophiles in Apolar Organic Solvents.
A comprehensive analytical protocol combining conductivity, diffusion-ordered NMR (DOSY), and photometric kinetic measurements is employed to analyze the nucleophilic reactivity of pyridinamide ion pairs in low-polarity organic solvents. The association patterns of these systems are found to strongly depend on cation size, with larger cations favoring the formation of cationic triple ion sandwich complexes together with free and highly nucleophilic anions. Kinetic studies using the ionic strength-controlled benzhydrylium method demonstrate that pyridinamide ions exhibit significantly higher nucleophilicities as compared to established organocatalysts, particularly in low-polarity solvents. Nucleophilicities are furthermore found to correlate well with Brønsted basicities measured in water and with Lewis basicities calculated in dichloromethane. Taken together, these findings provide quantitative guidelines for the future design of highly active Lewis base catalysts.
期刊介绍:
Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.